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Abstract

This thesis presents a clear conceptual basis for theoretically studying machine learn-
ing problems. Machine learning methods afford means to automate the discovery of
relationships in data sets. A relationship between quantities X and Y allows the pre-
diction of one quantity given information of the other. It is these relationships that
we make the central object of study. We call these relationships transitions.

A transition from a set X to a set Y is a function from X into the probability dis-
tributions on Y. Beginning with this simple notion, the thesis proceeds as follows:

• Utilizing tools from statistical decision theory, we develop an abstract language
for quantifying the information present in a transition.

• We attack the problem of generalized supervision. Generalized supervision
is the learning of classifiers from non-ideal data. An important example of
this is the learning of classifiers from noisily labelled data. We demonstrate
the virtues of our abstract treatment by producing generic methods for solving
these problems, as well as producing generic upper bounds for our methods as
well as lower bounds for any method that attempts to solve these problems.

• As a result of our study in generalized supervision, we produce means to define
procedures that are robust to certain forms of corruption. We explore, in detail,
procedures for learning classifiers that are robust to the effects of symmetric
label noise. The result is a classification algorithm that is easier to understand,
implement and parallelize than standard kernel based classification schemes,
such as the support vector machine and logistic regression. Furthermore, we
demonstrate the uniqueness of this method.

• Finally, we show how many feature learning schemes can be understood via
our language. We present well motivated objectives for the task of learning fea-
tures from unlabelled data, before showing how many standard feature learn-
ing methods (such as PCA, sparse coding, auto-encoders and so on) can be seen
as minimizing surrogates to our objective functions.
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1

Introduction

The Problem: The massive reduction in the cost of collecting, storing, trans-
porting and processing data has meant an increasing need for tools to make sense
of it. Unfortunately, the deployment of modern machine learning tools is more
akin to a craft than an engineering discipline: the inference problems to be solved
are often under-specified or ill-posed and the available tools are often adhoc - lack-
ing generality, transparency, usability and interoperability. Our premise is that
the root cause of these difficulties is a lack of a clear conceptual basis for machine
learning as an information engineering discipline.

- Robert C. Williamson, Reconceiving Machine Learning

This thesis presents part of the required conceptual basis. Machine learning
methods afford means to automate the discovery of relationships in data sets. A
relationship between quantities X and Y allows the prediction of one quantity given
information of the other. It is these relations that we make the central object of study.
We call these relations transitions.

Definition 1.1. A transition from a set X to a set Y is a function T : X → P(Y), from X
into the probability distributions on Y.

Intuitively, a transition T summarizes the uncertainty in predicting the quantity
Y given the observation of a quantity X. Many concepts in machine learning; such
as forecasts, probabilistic models, experiments, algorithms, conditional probabilities,
randomized decision rules, communication channels and so on, can all be understood
abstractly as transitions. Transitions therefore will serve as a guiding light.

1.1 Outline of the Thesis

This thesis is the result of a three year journey that sought to understand transi-
tions, with special focus paid to their application in machine learning theory. Some
definitions are repeated, and there is slight variations in notation for each chapter.
Ultimately, there is no single best notational system, effort has been placed into using
the notation that most clearly explains the contents of the chapter.



2 Introduction

Chapter one provides the abstract language underpinning the rest of the thesis. U-
tilizing tools from statistical decision theory, it shows how to define and compare the
information content in transitions. We do this through the notion of risk. The risk has
been shown previously to include a large number of information functions present
in the literature, including the often used mutual information and KL-divergence
[62; 105]. While most of the material is review, its presentation is greatly streamlined
through the focus on transitions. Its novel contributions include; a generalization of
the data processing theorem of information theory [46] (theorem 2.28) and means to
calculate deficiency distances [85] via linear programming (lemma 2.35).

Chapter two considers the problem of learning from corrupted data. In the nor-
mal theoretical analysis of supervised learning algorithms, it is assumed the decision
maker has access to clean data, that their observations are from the pattern they are
expected to predict [25]. In the real world this is usually not the case, data is normal-
ly corrupted and real world data sets are amalgamations of data of variable type and
quality. Understanding how to learn from and compare different corrupted data sets
is therefore a problem of great practical importance. This chapter provides a simple
correction to ERM style algorithms (theorem 3.2) that facilitates learning from a large
class of corrupted data sets. Furthermore, upper and lower bounds for this problem
(theorems 3.4 and 3.15) are presented. These bounds allow the comparison of different
corrupted data sets.

Chapter three focuses on one particular corrupted learning problem, namely the
learning of classifiers under symmetric label noise. A conceptually simple, easily
parallelized and robust classification algorithm is motivated and analysed. This al-
gorithm highlights the practical benefits that focusing on transitions can bring.

Finally, chapter four utilizes transitions in the study of feature learning methods.
Study began in this direction to take up a challenge posed by Yann LeCun to the ma-
chine learning theory community at the Conference on Learning Theory 2013 [87].
It presents means to quantify the quality of learnt features independently of the su-
pervised learning algorithm the features are used in. It is an attempt to provide a
conceptual foundation of unsupervised, "deep" methods for the automated learning
of features. Theorems 5.2 and 5.4 characterize when it is possible to learn generical-
ly good features from unlabelled data. Theorem 5.5 motivates several unsupervised
learning algorithms as surrogate approaches to minimizing the quantities in theorem
5.2. Furthermore, we explore supervised feature learning algorithms and show their
relationship to risks and deficiency presented in chapter one.

The following work was completed during the thesis [100]. While certainly in the
same spirit as the other material, it has been excluded from the thesis as it does not
fit as well with the theme of transitions as the work presented here.



2

Decision Theory, Transitions and
Experiments

Science

The intellectual and practical activity encompassing the systematic study of the
structure and behaviour of the physical and natural world through observation
and experiment.

The scientific process is a means for turning the results of experiments into knowl-
edge about the world in which we live. Much recent research effort has been directed
toward automating the scientific process. To do this, one needs to formulate the sci-
entific process in a precise mathematical language. This chapter specifies one such
language. What is presented here is hardly new. The material leans much on great
thinkers of times past [23; 53; 85; 125; 126] as well as more modern contributions
[52; 67; 86; 105; 117]. It serves as the conceptual foundation for this thesis. The pre-
sentation is abstract; this is intentional. By laying bare the basic language, we remove
the distraction that focusing on specific problems brings, and we expose the common
elements all representable by transitions.

2.1 Basic Notation

We require the following notation. Let R+ be the set of non-negative real numbers.
Let YX be the set of functions with domain X and range Y. For a set X define the
functions idX(x) = x, and 1X(x) = 1. For a function f ∈ RX×Y and y ∈ Y, we denote
the partial function f (−, y) ∈ RX, with f (−, y)(x) = f (x, y), with similar notation
for fixing the first argument. We denote the dual space of RX, the set of linear maps
RX → R, by (RX)∗. Finally, for a boolean predicate p : X → {True,False}, let
[[p(x)]] = 1 if p(x) is true and 0 otherwise. Other notation will be developed as
necessary.



4 Decision Theory, Transitions and Experiments

2.2 A Simple, Motivating Example

Consider the problem faced by a scientist in a laboratory. In front of them is a beaker,
containing one of a number of possible substances. Available to them are a myriad
of experiments that can be performed to identify the unknown substance. The sci-
entist could attempt to ignite it, mix a bit of it with some other known substance
and see what happens, x-ray a sample, throw some of it at high velocity toward an
oncoming beam of electrons and so on. Due to time and budget constraints, only
a limited number of experiments can be performed to ascertain the substances true
identity. Therefore the scientist should focus their effort on the "most informative"
experiments. Of course, what is informative is dependent on how the substance is to
be used. For example, if the scientist wishes to sprinkle some of it on their food to
enhance its flavour, misidentifying arsenic as table salt is a very bad idea. However, if
they want to sprinkle it on the snails in their garden, this distinction is less important.
The focus of this chapter is the abstract formulation of this problem. We present a
language for making decisions under uncertainty, a definition of an experiment and
finally means to quantify the information contained in an experiment.

2.3 The General Decision Problem

We consider the problem of how a decision maker, or scientist, uses observations
from experiments to inform their decisions. Let Θ be a set of possible values of some
unknown quantity, and A the set of actions available to the decision maker. The
consequence of an action is measured by a loss function L : Θ× A → R. A negative
loss represents a gain to the decision maker. In light of our previous example, Θ are
the possible substances that could be in the beaker, A is what the decision maker
can do with the substance (eat it, put it on snails and so on), and L measures the
consequence of an action to the scientist (L(arsenic, eat) should be high). The norm
of a loss function is given by its largest possible consequence (positive or negative),
‖L‖∞ = maxθ,a|L(θ, a)|.

To avoid measure theoretic technicalities, we assume Θ to be finite and A to be
closed, compact, set with L a continuous function. This ensures that infima of all
the quantities defined can be replaced by minima. Ultimately the methods suggested
in this thesis will (hopefully) run on a computer, meaning all real world objects we
wish to simulate need to be approximated by elements of a finite set. For those that
feel this restriction places severe limitations on the theory developed here, we point
out that all the following can be proven in the more general setting, at the cost of a
more technical presentation. For example the reader is directed to theorem 6.2.12 of
Torgersen [117], for direction on how results for finite Θ can be extended to those for
infinite Θ.

The decision maker seeks an action a that has low loss L(θ, a) on the true θ ∈ Θ. Due
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to their limited information concerning the phenomena, the decision maker does not
know the exact value of θ. They may have a vague idea of which θ are more or less
likely to occur. This uncertainty is represented by a probability distribution.

Definition 2.1. A probability distribution on a set X is an element of (RX)∗, i.e. a linear
function EP : RX → R, such that:

1. EP(1X) = 1.

2. If f (x) ≤ g(x), ∀x ∈ X then EP( f ) ≤ EP(g).

The linear function EP is called an expectation. For a large class of general topo-
logical spaces, this definition is equivalent to the usual one in terms of measures on
sigma algebras 1 [79]. Focusing on the expectation operator rather than its repre-
sentation via measures on sigma algebras and Lebesgue integrals provides means
to "abstract away" the sample space. The function f can be thought of as a gamble
taken by the decision maker, with f (x) being the loss incurred if the outcome x is
observed. The expectation EP( f ) is the total loss assigned to f by the decision maker.
The gamble f is preferred to the gamble g if it has lower expected loss. Expectation is
one way of ordering gambles. The first condition can be seen as a normalization, loss
1 is assigned to the constant gamble 1X. The second condition can be seen as the sen-
sible requirement that if f always offers lower loss than g, the decision maker always
prefers f to g. If necessary, we use the notation Ex∼P f (x) to make clear what quan-
tity we are taking expectations over. We drop the subscript when this is clear from
context. We also make use of the following infix notation to denote expectations,

Ex∼P f (x) = 〈P, f 〉X.

This notation for expectations is not standard, angled brackets are normally reserved
to denote inner products. For finite spaces expectations are exactly inner products.
We continue with both notations where appropriate. In particular the infix notation
makes it easier to see connections to concepts in functional analysis, such as adjoint
operators, that are so key to the ideas presented in chapter 3.

Denote the set of probability distributions on X by P(X), and the set of un-normalized
distributions (those linear functions for which property (1) in definition 2.1 does not
hold) by P+(X). This is a convex subset of (RX)∗. For x ∈ X, denote the point
mass distribution on x by δx. A probability distribution P ∈ P(Θ) facilitates the deci-
sion making process. The decision maker acts by choosing the action with minimum
expected loss,

arg min
a∈A

Eθ∼PL(θ, a).

The key question is which distribution to use. To discover this distribution, the deci-
sion maker is guided by experiments. Before we discuss the language for defining

1 The key is to identify sets with their indicator functions. P ∈ (RX)∗ defines a measure via P(C) :=
P(1C).
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and ordering experiments, we first focus on how to construct suitable loss function-
s. We show that the essential properties of a loss needed for the decision making
process are encoded in its corresponding entropy,

L(P) = min
a∈A

Eθ∼PL(θ, a).

We show that each entropy defines a canonical loss function. We also show that for
the sake of developing theory, one only need work with canonical losses.

Aside: Loss versus Regret

It is quite natural in decision theory to work with the regret,

∆L(P, a) = Eθ∼PL(θ, a)−min
a′∈A

Eθ∼PL(θ, a′),

which measures the excess loss of the decision makers action versus the loss of the
optimal action if they knew P. Here we focus on loss, elsewhere we focus on regret.

2.4 Representing Loss Functions

In this section we make heavy use of the infix notation for expectations, as well as
partial functions. In its partial form, a loss provides a mapping partialL : A → RΘ

with,
partialL(a) = L(−, a) ∈ RΘ.

In words, when the decision maker chooses an action a, they specify a function that
takes the unknown and returns the loss incurred by the decision maker. Choosing
an action is then equivalent to picking a partial loss function. In our notation,

Eθ∼PL(θ, a) = 〈P, L(−, a)〉Θ.

In many statistical problems, it is natural for the space of actions A to be the set of
distributions over unknowns P(Θ).

Definition 2.2. A loss L : Θ×P(Θ)→ R is proper if for all distributions P ∈ P(Θ),

P ∈ arg min
Q∈P(Θ)

〈P, L(−, Q)〉Θ.

It is strictly proper if P is the unique minimizer.

Intuitively, a proper loss takes a prediction Q ∈ P(Θ), and then penalizes the
decision maker according to how much weight their prediction assigned to the un-
known θ. Intuitively properness ensures that if the decision maker knows P, then
they minimize their expected loss by reporting P. Proper losses constitute a well s-
tudied class of loss functions, that provide suitable surrogates for decision problems
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[7; 31; 52; 52; 64; 67; 106; 133].

As will be shown, all ”sensible" losses are essentially re-parametrized proper losses.
We show how to construct proper losses from their entropies. Furthermore, we show
how to render any proper loss convex through a canonical re-parametrization. This
allows the use of tools from convex analysis [26; 90] to aid in calculating optimal
actions.

2.4.1 Entropy from Loss

Rather than working with probability distributions, we take the route of Williamson
in [129] and work with un-normalized distributions. For any loss function L, define
the entropy L : P+(Θ)→ R,

L(µ) = min
a∈A
〈µ, L(−, a)〉Θ.

L(P) measures the uncertainty of the optimal action for the distribution P. The
entropy is also called an uncertainty function, a Bayes risk or a support function [53; 105;
129]. It is concave and 1-homogeneous.

Definition 2.3. A function f : P+(Θ)→ R is 1-homogeneous if for all x ∈ P+(Θ) and for
all λ > 0,

f (λx) = λ f (x).

2.4.2 Loss from Entropy

All loss functions give rise to an entropy. Conversely, the entropy encodes much
information of its associated loss through its super-gradients, which include all the
Bayes actions for the underlying loss.

Bayes Actions and Super-gradients

For any distribution P, define the Bayes actions for P as the set of minimizers,

AP = arg min
a∈A

〈P, L(−, a)〉.

For any aP ∈ AP we have L(P) = 〈P, L(−, aP)〉.

Definition 2.4 (Super-gradient of a concave function [90]). Let f : P+(Θ) → R be a
concave function. v ∈ RΘ is a super-gradient of f at the point x if for all y ∈ P+(Θ),

〈y− x, v〉+ f (x) ≥ f (y).

Denote the set of all super-gradients at a point x by ∂ f (x), and the set of all super-
gradients by ∂ f = ∪x∂ f (x). For differentiable concave functions, super-gradients are
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the same as regular gradients [90]. 1-homogeneous functions afford a very simple
representation via their super-gradients.

Theorem 2.5 (Generalized Euler’s Homogeneous Function Theorem [51]). Let
f : P+(Θ)→ R be a concave 1-homogeneous function. Then for all x and for all v ∈ ∂ f (x),

f (x) = 〈x, v〉.

Furthermore, v ∈ ∂ f (x) =⇒ v ∈ ∂ f (λx) for all λ > 0.

We include a simple proof of this theorem for completeness.

Proof. Firstly, for all x and all λ > 0,

〈λx− x, v〉+ f (x) ≥ λ f (x),

which follows directly from the definition of a super-gradient at x and the 1-homogeneity
of f . Re-arranging yields, (1 − λ)( f (x) − 〈x, v〉) ≥ 0. Letting λ → 0+ yields
f (x) ≥ 〈x, v〉. Similarly, for all x and all λ > 0,

〈x− λx, v〉+ λ f (x) ≥ f (x),

which follows directly from the definition of a super-gradient at λx and the 1-
homogeneity of f . Re-arranging yields, (1− λ)( f (x)− 〈x, v〉) ≤ 0. Letting λ → 0+

yields f (x) ≤ 〈x, v〉, therefore f (x) = 〈x, v〉.

To prove the second claim, we have for all y and λ > 0,

〈y− x, v〉+ f (x) ≥ f (y)

〈λy− λx, v〉+ f (λx) ≥ f (λy),

where the first line is by definition, and the second is by 1-homogeneity. As y is
arbitrary, the claim is proved.

This theorem provides a corollary, that shows the super-gradients of a 1-homogeneous
function have a property similar to properness.

Corollary 2.6. Let f : P+(Θ) → R be a concave 1-homogeneous function. Then for all
x, y ∈ P+(Θ) and for all vx ∈ ∂ f (x), vy ∈ ∂ f (y),

〈x, vy〉 ≥ 〈x, vx〉.

We now show that the partial loss of a Bayes action is a super-gradient of L.

Theorem 2.7. For all loss functions L and distributions P, aP ∈ AP ⇔ L(−, aP) ∈ ∂L(P).
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Proof. For aP ∈ AP we have for all µ ∈ P+(Θ),

〈µ− P, L(−, aP)〉+ L(P) = 〈µ, L(−, aP)〉 ≥ min
a∈A
〈µ, L(−, a)〉 = L(µ).

Hence L(−, aP) ∈ ∂L(P). For the converse, if L(−, aP) ∈ ∂L(P) then,

L(P) = 〈P, L(−, aP)〉 = min
a∈A
〈P, L(−, a)〉,

meaning a is Bayes.

Therefore, once inadmissible actions are discarded, we can identify a loss with a
subset of ∂L. Rather than working with a subset ∂L, it is advantageous to consider
all of ∂L.

Definition 2.8 (Canonical Loss). Let L : P+(Θ) → R be a concave, 1-homogeneous
function. Then its canonical loss, L : Θ× ∂L→ R is given by, L(θ, `) = `(θ).

As will be shown, canonical losses can always be convexified. Furthermore, they
maintain all of the properties of L needed for assessing the quality of decisions.

The Bayes Super Prediction Set

The process of canonising a loss, i.e. going from,

L→ L→ L,

can create extra partial losses/actions that were not originally available to the decision
maker under L. However, they gain no benefit from these extra actions. From any
entropy define the Bayes super prediction set,

SL :=
{
` ∈ RΘ : 〈µ, `〉 ≥ L(µ), ∀µ ∈ RΘ

+

}
.

By the definition,

min
a∈A
〈P, L(−, a)〉 = min

`∈SL
〈P, `〉, ∀P ∈ P(Θ).

The Bayes super prediction set is precisely those partial losses that the decision maker
need not use over the actions available to them, no matter the distribution P. The
super prediction set is convex. Furthermore, the Bayes actions for L are the lower
boundary of the super prediction set.

Lemma 2.9. Let L : P+(Θ) → R be a concave, 1-homogeneous function. Then ` ∈ ∂L if
and only if,

〈µ, `〉 ≥ L(µ), ∀µ ∈ P+(Θ),

with equality holding for at least one µ.



10 Decision Theory, Transitions and Experiments

The proof is a straightforward application of 1-homogeneity and super-gradients.

Admissible Actions

Bayes actions are one notion of optimal action. Admissibility affords another.

Definition 2.10. Let L be a loss. An action a is admissible if there does not exist an action
a∗ such that,

L(θ, a∗) ≤ L(θ, a), ∀θ ∈ Θ,

with strict inequality for at least one θ.

Intuitively, an action is admissible if there is no other action that is obviously
better. Bayesian actions are optimal if the decision maker has knowledge about the
unknown, given in the form of a probability distribution. Interestingly, the class of
admissible and Bayesian actions are the same for many loss functions.

Theorem 2.11 (Complete Class Theorem [24; 126] ). Let L be a loss such that im(partialL)

is a convex subset of RΘ. Then the set of Bayes actions for L is in 1-1 correspondence with
the set of admissible actions for L.

If the decision maker is allowed to used randomized actions, i.e. distributions over
A with L(θ, Q) = Ea∼QL(θ, a), then all admissible actions are Bayesian actions.

Proper Losses

Using the canonical loss allows the construction of proper losses from entropies.

Lemma 2.12 (Loss from Entropy). Let L : P+(Θ) → R be a concave, 1-homogeneous
function and let ∇L : P+(Θ) → RΘ be a super-gradient function, ∇L(µ) ∈ ∂L(µ), ∀µ.
Then,

L(θ, Q) = L(θ,∇L(Q)),

is a proper loss. Furthermore if L is strictly concave then L is strictly proper.

Regret for Proper Losses

Recall the notion of regret,

∆L(P, a) = Eθ∼PL(θ, a)−min
a′∈A

Eθ∼PL(θ, a′).

For proper losses, the regret takes on the particularly elegant form,

∆L(P, Q) = Eθ∼P [L(θ, Q)− L(θ, P)] = 〈P,∇L(Q)−∇L(P)〉.

The regret for a proper loss is also equal to the Bregman divergence between P and
Q. We have,

L(Q) + 〈P−Q,∇L(Q)〉 − L(P)︸ ︷︷ ︸
Bregman divergence induced by L

= 〈P,∇L(Q)−∇L(P)〉,
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where we have used the fact that L(Q) = 〈Q,∇L(Q)〉.

2.4.3 Convexification of Losses in Canonical Form

The preceding shows how to construct losses, we begin with a convex 1-homogeneous
function and then take super-gradients. Focus now turns to their convexification.
Once convexified, the decision maker gains access to the large and ever growing lit-
erature on the minimization of convex functions to aid in the calculation of optimal
actions. The development here closely follows that in [52], which focused on proper
losses. Working with canonical versus proper losses streamlines the development.
For example, for some proper losses lemma 2.14 fails to hold, while it does hold for
all canonical losses. Furthermore, our result on convexification of canonical losses
(theorem 2.16), is to the best of our knowledge novel.

Recall 1Θ ∈ RΘ is the function that always returns 1, and define 1⊥Θ to be its or-
thogonal complement in RΘ, i.e. the functions v ∈ RΘ with,

〈1Θ, v〉 = ∑
z∈Θ

v(z) = 0.

Define,

ΓL = {(γ, v) ∈ R× 1⊥Θ : γ1Θ + v ∈ ∂L }.

Lemma 2.13. Let (γ, v) ∈ ΓL. Then γ is uniquely determined by v.

Proof. Fix v and suppose there exists γ1 and γ2 with γ1 < γ2 and γ11Θ + v, γ21Θ +

v ∈ ∂L. By assumption, γ21Θ + v is Bayes for some distribution P. But,

〈P, γ11Θ + v〉 = γ1 + 〈P, v〉 < γ2 + 〈P, v〉 = 〈P, γ21Θ + v〉,

a contradiction.

Thus we lose nothing by working with projections of losses onto 1⊥Θ. Geometri-
cally, we have the following sequence of maps,

∂L
partialL // RΘ

proj
1⊥Θ // 1⊥Θ,

with proj1⊥Θ the projection onto 1⊥Θ. Lemma 2.13 shows that proj1⊥Θ ◦ partialL is in-
vertible. Define,

Γ̂L = im(proj1⊥Θ ◦ partialL) ⊆ 1⊥Θ.

By lemma 2.13 Γ̂L is in 1-1 correspondence with ∂L.

Lemma 2.14. Γ̂L is a convex set.
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Proof. To show Γ̂L is convex, we are required to show that for all `1, `2 ∈ ∂L and all
λ ∈ [0, 1] there is a constant γ such that,

λ`1 + (1− λ)`2 − γ1Θ ∈ ∂L.

By lemma 2.9, this is equivalent to,

λ〈P, `1〉+ (1− λ)〈P, `2〉 − L(P)︸ ︷︷ ︸
γ(P)

−γ = γ(P)− γ ≥ 0, ∀P ∈ P(Θ),

with equality holding for one P. Let γ∗ = minP γ(P), with P∗ the distribution that
achieves the minimum. Then,

λ〈P, `1〉+ (1− λ)〈P, `2〉 − γ∗ ≥ L(P), ∀P ∈ P(Θ),

with equality for P∗. Therefore by lemma 2.9, λ`1 + (1− λ)`2 + γ∗1Θ ∈ ∂L.

Define the function Ψ : Γ̂L → R such that,

v + Ψ(v)1Θ ∈ ∂L.

By lemma 2.13, Ψ is well defined.

Lemma 2.15. Ψ is a convex function.

Proof. Let v1, v2 ∈ Γ̂L with vλ = λv1 + (1− λ)v2. Let their partial losses be,

`1 = v1 + Ψ(v1)1Θ

`2 = v2 + Ψ(v2)1Θ

`λ = λv1 + (1− λ)v2 + Ψ(λv1 + (1− λ)v2)1Θ,

respectively. By assumption, for all λ ∈ [0, 1] there exists a distribution Pλ such that,

〈Pλ, `λ〉 ≤ 〈Pλ, `〉, ∀` ∈ ∂L.

Assume there is a λ∗ such that,

λ∗Ψ(v1) + (1− λ∗)Ψ(v2) < Ψ(λ∗v1 + (1− λ∗)v2).

But then,
〈Pλ∗ , λ∗`1 + (1− λ∗)`2〉 < 〈Pλ∗ , `λ∗〉,

a contradiction.

This gives the following representation theorem for canonical losses.
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Theorem 2.16 (Representation of Canonical Losses). Let L : P+(Θ)→ R be a concave,
1-homogeneous function. Then its canonical loss L can be represented as L : Θ× C → R,
with C ⊆ 1⊥Θ a convex set and,

L(θ, v) = v(θ) + Ψ(v),

for a convex function Ψ.

2.4.4 Example: Binary Decisions and Log Loss

For this example, take Θ = {−1, 1}, with loss L(−, p) = (− log(1− p),− log(p)) for
p ∈ (0, 1), where p is the probability that θ = 1. We plot this loss in 2.1. The partial
losses are given by the red curve, the super prediction set in grey. The loss on neg-
atives is plotted on the x-axis. In figure 2.2 we show geometrically how to produce
canonical coordinates.

For canonical coordinates, We seek to decompose L(−, p) = γ1v + γ21Θ, where
v =

(
− 1

2 , 1
2

)
. Here we have projected p = 0.8 onto 1⊥Θ. The length of the blue

line is related to Ψ(γ1). Solving for γ0 and γ1 in terms of p gives,

γ1 = log
(

p
1− p

)
and γ2 =

1
2

log
(

1
p(1− p)

)
.

This equation can be easily solved for p, giving,

p =
exp(γ1)

1 + exp(γ1)
and γ2 = Ψ(γ1) = log (1 + eγ1)− γ1

2
.

The above relationship between p and γ1 is exactly that given by the canonical link for
log loss [104]. Finally for log loss,

L(−, γ) = γv + (log (1 + eγ)− γ

2
)1Θ.

This yields,
L(y, γ) = log

(
1 + e−yγ

)
,

the usual form of logistic loss.

2.4.5 Misclassification and Linear Loss

For any observation space define the misclassification loss L01 : Θ×Θ→ R,

L01(θ, θ′) = [[θ 6= θ′]].
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Fig. 2.1: Plot of super prediction set and its lower boundary for log loss, see text.

In words, the decision maker incurs loss 1 if their prediction is different to their
observation and no loss otherwise. Allowing randomized actions gives linear loss,

Llinear(θ, Q) = Eθ′∼QL01(θ, θ′).

In canonical form, linear loss can be written as L(−, v) = v + |Θ|−1
|Θ| 1Θ. By theorem

2.16, linear loss is therefore the primitive loss, as it is the linear term in all other
canonical losses. We will see in chapter 4, that linear loss provides means to learn
classifiers.

2.5 Experiments

Recall that the decision maker chooses their actions by minimizing their expected
loss,

arg min
a∈A

Eθ∼PL(θ, a).

The key question is which distribution to use. To discover this distribution, the de-
cision maker is guided by experiments. Let Z be a finite set of possible outcomes
of an experiment. The outcome of the experiment, z ∈ Z , is assumed related to
the unknown, certain outcomes are more strongly linked to certain values of θ. The
relationship between the unknown and the outcome of the experiment is modelled
by a transition.

2.5.1 Transitions and their Algebra

Definition 2.17. A transition from a set X to a set Y is a function T : X → P(Y).
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Fig. 2.2: Construction of canonical coordinates for log loss, see text.

Denote the set of all transitions from X to Y by T(X, Y). Transitions (or Markov
kernels), constitute a modern approach to conditional probability [36; 39; 85; 117].
The distribution T(x) is how the decision maker summarizes their uncertainty about
Y if the true value of X is x. Every function φ ∈ YX defines a transition with,

〈φ(x), f 〉Y = f (φ(x)), ∀ f ∈ RY.

Such a transition is called deterministic. Transitions can also be thought of as dual
mappings, T : (RX)∗ → (RY)∗. We define,

〈T(α), f 〉Y = 〈α, 〈T(x), f 〉Y〉X, ∀ f ∈ RY, ∀α ∈ (RX)∗.

The function T∗( f )(x) = 〈T(x), f 〉Y is the pullback of f by T. Formally, the operator
T∗ is the adjoint or transpose of T. Transitions can be composed. For transitions T ∈
T(X, Y) and S ∈ T(Y, Z) we can define S ◦ T ∈ T(X, Z) with,

〈S ◦ T(x), f 〉Z = 〈T(x), 〈S(y), f 〉Z〉Y, ∀ f ∈ RZ.

In usual notation, this is just iterated expectation,

〈S ◦ T(x), f 〉Z = Ey∼T(x)Ez∼S(y) f (z).

Intuitively, this can be seen as "marginalizing" over Y in the Markov chain,

X → Y → Z.

If X and Y are finite sets, a transition T ∈ T(X, Y) can be represented by a column
stochastic matrix, with composition given by matrix multiplication.
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Transitions can also be combined in parallel. For P, Q ∈ P(X), denote the product
distribution by P⊗Q. If Ti ∈ T(Xi, Yi), i ∈ [1; k], are transitions then denote,

⊗k
i=1Ti ∈ T(×k

i=iXi,×k
i=1Yi)

with ⊗k
i=1Ti(x) = T1(x1) ⊗ · · · ⊗ Tk(xk). Transitions can also be replicated. For

any transition T ∈ T(X, Y) we denote the replicated transition Tn ∈ T(X, Yn), n ∈
{1, 2, . . . }, with,

Tn(x) = T(x)⊗ . . . T(x)︸ ︷︷ ︸
n times

= T(x)n,

the n-fold product of T(x). A distribution P ∈ P(X) and a transition T ∈ T(X, Y)
can be combined into a joint distribution P n T ∈ P(X×Y), with,

〈P n T, f 〉X×Y = 〈P, 〈T(x), fx〉Y〉X = Ex∼PEy∼T(x) f (x, y), ∀ f ∈ RX×Y.

Bayes theorem provides means to disintegrate [36; 111] a joint distribution PX n TX→Y
into a joint distribution PY n TY→X, where PX ∈ P(X) and TX→Y ∈ T(X, Y), and
PY ∈ P(Y) and TY→X ∈ T(X, Y). Disintegration theorems hold in very general
spaces, not just the cases considered here.

2.5.2 Comparing Experiments

An experiment is a transition e ∈ T(Θ,Z). We call Z the observation space of the
experiment. The distribution e(θ) summarizes the decision maker’s uncertainty in
the observation when θ is the value of the unknown. After observing the results of
an experiment, the decision maker is tasked with choosing a suitable action. They
do this via a learning algorithm.

A learning algorithm is a transition A ∈ T(Z , A). A(z) summarizes the decision mak-
ers uncertainty in which action to choose, given an observation z ∈ Z . We define the
risk,

RL(θ, e,A) = Ez∼e(θ)Ea∼A(z)L(θ, a).

The risk measures the quality of the final action chosen by the decision maker when
they use the learning algorithm A, after performing experiment e, assuming θ is
the true value of the unknown. The risk does not provide a single number for the
comparison of experiments, rather it provides an entire risk profile. To compare risks
directly, the decision maker can use the Bayesian or max risks defined as,

Rπ
L (e,A) := Eθ∼πRL(θ, e,A) and RL(e,A) := sup

θ

RL(θ, e,A),

respectively. The Bayesian risk is more appropriate if the decision maker has some
intuition about θ, given in the form of a prior probability distribution π. The max
risk is more appropriate if the decision maker has no prior knowledge concerning θ.
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These quantities allow the decision maker to compare the usefulness of experiment,
learning algorithm pairs. To compare experiments directly, we assume the decision
maker uses the best learning algorithm. Define the minimum Bayesian risk and min-
imax risk as,

Rπ
L (e) := min

A
Rπ

L (e,A) and RL(e) := min
A
RL(e,A),

respectively. The minimum Bayes risk and the minimax risk are deeply related.

Theorem 2.18. For all experiments e and loss functions L,

RL(e) = sup
π∈P(Θ)

Rπ
L (e).

The proof is a simple application of the minimax theorem [82]. In light of this
theorem, we focus on Bayesian risks for the remainder. All results have a minimax
equivalent.

We also point out to the reader that all notions here have relative versions. For
example the relative risk is defined as,

∆RL(θ, e,A) = RL(θ, e,A)− inf
a∈A

L(θ, a),

which measures the risk relative to knowing θ.

Abstracting Away the Observation: Risk as Loss

Ultimately, what matters to the decision maker is not the exact details of the exper-
iment and their learning algorithm. What matters is that the distribution A ◦ e(θ)
places high weight on actions that are suitable for θ. We can think of risk as a loss,

RL : Θ×T(Θ, A)→ R,

with RL(θ,A) = Ea∼A(θ)L(θ, a). Different experiments allow the decision maker
access to different subsets of T(Θ, A).

Admissible and Bayesian Learning Algorithms

The optimal learning algorithm will in general depend on their prior knowledge
about the unknown. Even without this knowledge, the decision maker can remove
rules that are obviously not optimal.

Definition 2.19. Let e be an experiment. A learning algorithm A is admissible for e if
there does not exist a learning algorithm A′ with,

RL(θ, e,A′) ≤ RL(θ, e,A), ∀θ ∈ Θ
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with strict inequality for at least one θ.

Intuitively, a learning algorithm is admissible if it is not obviously worse than
some other learning algorithm. If the decision maker has prior π, they can minimize
the Bayesian risk by using a Bayesian learning algorithm.

Definition 2.20. Let e be an experiment and π a prior. A learning algorithm A∗ is Bayes
for (π, e) if,

A∗ ∈ arg min
A

Rπ
L (e,A).

Much like the case for Bayesian actions, the decision maker need only consider
Bayesian learning algorithms.

Theorem 2.21 (Complete Class Theorem [126]). A learning algorithm A is admissible
for e if and only if there exists a prior π such that A is Bayes for (π, e).

The above theorem says that Bayesian algorithms provide all rules that a sensible
decision maker should use. Picking a particular admissible algorithm is equivalent to
picking a prior π and minimizing the Bayesian risk against that prior. While statis-
tically, admissible algorithms afford no obvious improvements, they may be hard to
implement. Our language as is does not take this into account. The study of inad-
missible algorithms and their risks is therefore a worthwhile endeavour.

Bayes optimal algorithms admit a simple representation. A prior π and an exper-
iment e define a joint distribution on pairs Θ×Z in the obvious way. Let πZ be the
marginal distribution over the observation space, and η ∈ T(Z , Θ) be the induced
conditional distribution of unknowns given observations. Then,

Rπ
L (e) = Ez∼πZ L(η(z)),

with Bayes optimal algorithm,

A∗(z) := arg min
a∈A

Eθ∼η(z)L(θ, a).

We stress that this algorithm is prior dependent, η depends on the prior π and the
experiment T.

2.5.3 When is One Experiment Always Better than Another?

Let e and e′ be experiments. Suppose that due to constraints, the decision maker
can only perform one of these two experiments. The decision maker can compare
the Bayes or minimax risks of the two experiments, however this involves a (perhaps
difficult) calculation. Furthermore, if the loss function of interest changes, then the
ordering of the experiments might change. We seek qualitative results concerning
when e is always better than e′ no matter what the loss or prior distribution.
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Definition 2.22. Let e ∈ T(Θ,Z) and e′ ∈ T(Θ,Z ′) be experiments. e divides e′ (written
e | e′) if there exists a transition T ∈ T(Z ,Z ′) such that e′ = T ◦ e.

Intuitively, e | e′ if e′ is e with extra noise T. We make this intuition precise with
theorem 2.24. For an experiment e, let Te(Θ, A) be the set of transitions from Θ to A
that e divides.

Theorem 2.23. e divides e′ if and only if for all action sets A,

Te′(Θ, A) ⊆ Te(Θ, A).

Proof. The forward implication follows simply from the definition. For the converse,
take A = Z ′ and note e′ ∈ Te′(Θ,Z ′). By assumption,

Te′(Θ,Z ′) ⊆ Te(Θ,Z ′).

As e′ ∈ Te′(Θ,Z ′), this implies there exists a T with T ◦ e = e′.

The Blackwell-Sherman-Stein Theorem and Sufficiency

Theorem 2.24 (Blackwell-Sherman-Stein Theorem [24]). Let e and e′ be experiments.
e | e′ if and only if for all action sets, loss functions and priors,

Rπ
L (e) ≤ Rπ

L (e
′).

We prove the forward implication, called the data processing theorem. The proof
of the converse will come later, as a simple corollary of the randomization theorem.

Proof. For any learning algorithm A′ ∈ T(Z ′, A) consider the learning algorithm
A = A′ ◦ T ∈ T(Z , A). As e′ = T ◦ e, it is easy to verify that,

Rπ
L (e
′,A′) = Rπ

L (T ◦ e,A′) = Rπ
L (e,A′ ◦ T) = Rπ

L (e,A).

To complete the proof take minima over A and A′.

We say e and e′ are equivalent experiments (written e ∼= e′) if both e | e′ and e′ | e.
Equivalent experiments have equivalent risks. A key notion in statistics is that of
sufficiency. A sufficient statistic is a function of the observation that loses none of the
information contained in e. The Blackwell-Sherman-Stein theorem provides means
to define and understand sufficiency. Identifying and exploiting sufficient statistics
allows the decision maker to compress the information contained in the observation,
without losing information.

Definition 2.25. Let e ∈ T(Θ,Z) be an experiment. A transition T ∈ T(Z , Z̃) is suffi-
cient for e if T ◦ e ∼= e.
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By the Blackwell-Sherman-Stein theorem, sufficient statistics maintain all infor-
mation in the observation, under the assumption the decision maker uses the best
learning algorithm for each experiment.

For any set Θ of unknowns there is a most informative and a least informative ex-
periment. Recall the identity function idΘ, idΘ(θ) = θ. For any experiment e, we
have e ◦ idΘ = e. Therefore, idΘ divides any experiment. Intuitively, idΘ provides the
decision maker the exact value of θ. This experiment has risk,

Rπ
L (idΘ) = Eθ∼π min

a∈A
L(θ, a).

For any set X, define the terminal transition •X ∈ {1}X with •X(x) = 1 for all X.
Intuitively this transition throws away all information about X. Much like the iden-
tity transition divides every experiment, the terminal transition is divided by every
experiment. For all experiments e, •Θ = •Z ◦ e. This experiment has risk,

Rπ
L (•Θ) = L(π).

By the data processing theorem,

Rπ
L (idΘ) ≤ Rπ

L (e) ≤ Rπ
L (•Θ).

Relationship to the Standard Data Processing Theorem

Definition 2.26. Let f : R+ → R be a convex function with f (1) = 0. For all distributions
P, Q ∈ P(Z) the f -divergence between P and Q is,

D f (P, Q) = 〈P, f
(

dQ
dP

)
〉,

if Q is absolutely continuous with respect to P and is undefined otherwise.

f -divergences provide one means of measuring the dissimilarity of two probability
distributions. They include many standard measures of dissimilarity, including the
KL-divergence, the Hellinger divergence and variational distance [2; 48]. The stan-
dard data processing theorem states that for all sets Z , Z̃ , all transitions T ∈ T(Z , Z̃),
all distributions P, Q ∈ P(Z) and all f -divergences,

D f (T(P), T(Q)) ≤ D f (P, Q).

Intuitively, adding noise always makes it harder to distinguish P and Q. This theorem
is actually theorem 2.24 in disguise. The pair P, Q ∈ P(Z) define a transition e ∈
T({−1, 1},Z), with e(1) = P and e(−1) = Q.

Theorem 2.27 (Minimum Bayes Risk is an f -divergence [105]). For all f -divergences,
there exists a loss function L : {−1, 1} × A→ R and a prior π such that for all experiments
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e ∈ T({−1, 1},Z),

Rπ
L (•Θ)−Rπ

L (e) = L(π)−Rπ
L (e) = D f (e(−1), e(1)).

The data processing theorem for f -divergences follows directly from our data
processing theorem. In [62] this correspondence is developed further to create multi-
f -divergences. These results highlight the foundational role played by the Bayesian
risk.

Digression: Generalised Data Processing Theorems

Key to the proof of the data processing theorem is the insight that if e | e′ then,

Te′(Θ, A) ⊆ Te(Θ, A).

Intuitively, this means more learning algorithms are available to the decision maker
after performing the experiment e than e′. This suggests another means to construct
quantities that satisfy data processing theorems.

Theorem 2.28. Let ψ : T(Θ, A)→ R and define the information measure,

Iψ(e) = min
A∈Te(Θ,A)

ψ(A).

If e | e′ then Iψ(e) ≤ Iψ(e′).

Proof. If e | e′ then Te′(Θ, A) ⊆ Te(Θ, A). Therefore,

min
A∈Te(Θ,A)

ψ(A) ≤ min
A′∈Te′ (Θ,A)

ψ(A′).

We recover the usual data processing theorem by taking,

ψ(A) = Eθ∼πEa∼A(θ)L(θ,A).

Remarkably, the proof of theorem 2.28 makes no reference to expected risks, transi-
tions, or even probability distributions! Much recent work has been directed toward
characterizing functions that satisfy a data processing theorem [10; 49; 71]. Invariably,
these approaches "cook the books", adding extra constraints until KL-divergence and
mutual information are discovered to be the only such functions, and the standard
data processing theorem of information theory is recovered [46].

Many other uncertainty calculus exist, based on more exotic means of making deci-
sions than relatively simple probability theory (see [70] for some). For example in
robust statistics, the linear functions defining probabilities are replaced with convex
functions, probabilities replaced with upper and lower probabilities (see chapter 10
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of [75]). In the emerging fields of non-commutative probability [42; 124], a field with
close ties to quantum theory, the commutative algebra of functions is replaced with
general non commuting algebras. All these different systems could potentially be
used in place of probability. The generality of theorem 2.28 would seem to indicate
that such a theorem will excess in these other systems.

Deficiency and Quantitative Data Processing Theorems

The converse of the Blackwell-Sherman-Stein theorem states that if e does not divide
e′ then there is a loss function and prior that renders e′ more useful. Furthermore, if
e′ does not divide e then there is a loss function and prior that renders e more useful.
The gap in risks is quantified by the deficiency.

Definition 2.29. Let P, Q ∈ P(Z) be distributions. The variational distance between P
and Q is,

V(P, Q) := sup
f∈[0,1]Z

|EP( f )−EQ( f )| .

Intuitively, variational distance is the maximum difference in assigned loss when
making decisions via P or Q. The variational distance is a metric on probability
distributions. It is an f -divergence with f (x) = |x − 1| [2; 48]. This means the
variational divergence satisfies a data processing inequality, for all transitions T ∈
T(Z ,Z ′),

V(T(P), T(Q)) ≤ V(P, Q).

Definition 2.30. Let e ∈ T(Θ,Z) and e′ ∈ T(Θ,Z ′) be experiments. The directed
deficiency from e to e′ is,

ξπ(e, e′) := min
T∈T(Z ,Z ′)

Eθ∼πV(T ◦ e(θ), e′(θ)).

The directed deficiency provides means to quantify how close e is to dividing e′.
ξπ(e, e′) = 0 for all priors if and only if e | e′. The deficiency is defined as,

Ξπ(e, e′) := max{ξπ(e, e′), ξπ(e′, e)}.

Deficiency measures how close to equivalence e and e′ are. Ξπ(e, e′) = 0 for all priors
if and only if e ∼= e′. The directed deficiency provides a quantitative version of the
Blackwell-Sherman-Stein theorem.

Theorem 2.31 (Randomization Theorem [85]). Fix ε > 0 and a prior π. Let e and e′ be
experiments. Then,

Rπ
L (e) ≤ Rπ

L (e
′) + ε ‖L‖∞

for all action sets and loss functions, if and only if ξπ(e, e′) ≤ ε.

We present the proof appearing in [117], with some streamlining.
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Proof. We begin with the reverse implication. As ξπ(e, e′) ≤ ε, there exists a transition
T ∈ T(Z ,Z ′) such that,

Eθ∼πV(T ◦ e(θ), e′(θ)) ≤ ε.

Now fix a learning algorithm A′ ∈ T(Z ′, A), and consider A = A′ ◦ T as in the
diagram below.

Θ
e

��

e′

  
Z T // Z ′ A′ // A

We have,

Rπ
L (e,A)−Rπ

L (e
′,A′) = Eθ∼π

[
Ea∼A◦e(θ)L(θ, a)−Ea∼A′◦e′(θ)L(θ, a)

]
≤ Eθ∼πV(A ◦ e(θ),A′ ◦ e′(θ)) ‖L‖∞

= Eθ∼πV(A′ ◦ T ◦ e(θ),A′ ◦ e′(θ)) ‖L‖∞

≤ Eθ∼πV(T ◦ e(θ), e′(θ)) ‖L‖∞

≤ ε ‖L‖∞

where the first line follows from the definition of the Bayesian risk, the second fol-
lows from the definition of the variational distance, the third from the definition of
A, the fourth as variational distance is an f -divergence and therefore satisfies a data
processing inequality and finally from our assumptions on T. The proof is completed
by taking a minimum over A′ and A.

For the forward implication, first fix a set of actions A and a learning algorithm
A′ ∈ T(Z ′, A) and define the function,

φ(L,A) = Rπ
L (e,A)−Rπ

L (e
′,A′)− ε ‖L‖∞ .

Note that φ is affine in A and concave in L. By the conditions in the theorem,

sup
L

min
A

φ(L,A) ≤ 0.

By the minimax theorem [82] or strong convex duality [90], there exists a saddle point
(L∗,A∗) with,

φ(L∗,A∗) = min
A

sup
L

φ(L,A) = sup
L

min
A

φ(L,A) ≤ 0.

This implies,
Rπ

L (e,A∗) ≤ Rπ
L (e
′,A′) + ε ‖L‖∞ , ∀L.

This means Eθ∼πV(A∗ ◦ e(θ),A′ ◦ e′(θ)) ≤ ε, from the definition of variational dis-
tance. Note that A′ and the action set A are arbitrary. To complete the proof, take
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A = Z ′ and A′ = idZ ′ . The transition T is then given by A∗.

The proof of the reverse implication of the Blackwell-Sherman-Stein theorem can
be recovered by setting ε = 0. The randomization theorem shows there is a deep
connection between differences of risks and deficiency. The following theorem makes
this connection precise.

Theorem 2.32. Let e and e′ be experiments. For all priors π,

Ξπ(e, e′) = sup
L:‖L‖∞ 6=0

|Rπ
L (e)−Rπ

L (e′)|
‖L‖∞

.

For the proof we require the following simple lemma.

Lemma 2.33. For x, y ∈ R if ∀ε ∈ R, x ≤ ε⇔ y ≤ ε then x = y.

Proof. Suppose that x 6= y and without loss of generality assume that x < y. Set
ε = x+y

2 . Then x ≤ ε and y > ε, which implies the contrapositive.

We now prove the theorem.

Proof. If Ξπ(e, e′) ≤ ε then ξπ(e, e′) ≤ ε and ξπ(e′, e) ≤ ε. By the randomization
theorem,

|Rπ
L (e)−Rπ

L (e′)|
‖L‖∞

≤ ε, ∀L : ‖L‖∞ 6= 0.

Conversely, if,

sup
L:‖L‖∞ 6=0

|Rπ
L (e)−Rπ

L (e′)|
‖L‖∞

≤ ε,

then Rπ
L (e) ≤ Rπ

L (e′) + ε ‖L‖∞ and Rπ
L (e′) ≤ Rπ

L (e) + ε ‖L‖∞. By the randomization
theorem, this means Ξπ(e, e′) ≤ ε. This combined with the above lemma completes
the proof.

The randomization theorem can be used to define quantitative versions of concepts
such as sufficiency. This was Le Cam’s original motivation for defining the quantity
in [85]. T is approximately sufficient for e if Ξπ(e, T ◦ e) is small. Deficiency provides
a metric on experiments.

Theorem 2.34. Let π be a prior that assigns non zero probability to each unknown. Then
Ξπ is a metric on experiments modulo equivalence.

Proof. Ξπ is obviously non-negative and symmetric. We are required to show that it
satisfies the triangle inequality. Let e, e′, e′′ be experiments, with T and T′ transitions
as in the diagram below.
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Θ
e

xx
e′
��

e′′

''
Z T // Z ′ T′ // Z ′′

We have for all θ,

V(e′′(θ), T′ ◦ T ◦ e(θ)) ≤ V(e′′(θ), T′ ◦ e′(θ)) + V(T′ ◦ e′(θ), T′ ◦ T ◦ e(θ))

≤ V(e′′(θ), T′ ◦ e′(θ)) + V(e′(θ), T ◦ e(θ)),

where we have used the fact that the variational distance is a metric, followed by the
data processing inequality. Averaging over π and taking a minimum over T and T′

yields,
ξπ(e, e′′) ≤ ξπ(e, e′) + ξπ(e′, e′′).

Reversing the direction and taking maximums yields the desired result.

Calculating Deficiency

The variational distance can be calculated as the l1 distance,

V(P, Q) =
1
2 ∑

z∈Z
|P(z)−Q(z)| .

Experiments e ∈ T(Θ,Z) can be represented by a |Z| × |Θ| column stochastic ma-
trix, Tij ≥ 0 and ∑i Tij = 1 for all j. Furthermore, the prior distribution π can be
represented by a vector in R|Θ|. Using these representations, the directed deficiency
can be calculated via linear programming.

Lemma 2.35. Let e and e′ experiments with their stochastic matrix representation given by
E and E′ respectively. Then ξπ(e, e′) can be calculated via the following linear program,

min
Mij,Tij

|Z ′|

∑
i=1

|Θ|

∑
j=1

Mij

subject to

Mij, Tij ≥ 0 and
∣∣∣πjE′ij − πj [TE]ij

∣∣∣ ≤ Mij ∀i, j

|Z ′|

∑
i=1

Tij = 1 ∀j,

where [TE]ij is the ij entry of TE.

Proof. The constraints Tij ≥ 0 and
|Z ′|
∑

i=1
Tij = 1 ∀j, ensure that T is a stochastic matrix.
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Taking the final constraint and summing over i and j yields,

|Z ′|

∑
i=1

|Θ|

∑
j=1

Mij ≥
|Z ′|

∑
i=1

|Θ|

∑
j=1

∣∣∣πjE′ij − πj [TE]ij
∣∣∣

=
|Θ|

∑
j=1

πj

|Z ′|

∑
i=1

∣∣∣E′ij − [TE]ij
∣∣∣

= Eθ∼πV(e′(θ), T ◦ e(θ)).

Equality is attained in the above if Mij =
∣∣∣πjE′ij − πj [TE]ij

∣∣∣. Minimizing over M and
T yields an optimal solution of ξπ(e, e′).

2.6 Preview of the Remainder of the Thesis

While the ideas of the previous subsections originated in theoretical statistics [24;
60; 86; 117] they can be readily applied to machine learning problems. The main
distinction is that statistics focuses on parametric families and loss functions of type
L : Θ×Θ → R. The goal is to accurately reconstruct parameters. In machine learning
one is interested in predicting the observations of the experiment well. The remainder
of this thesis turns to the quantification of the usefulness of different experiments for
different prediction problems.

2.6.1 Prediction Problems

A central problem in machine learning is that of prediction. Given side information
x ∈ X, the goal of the decision maker is to correctly predict a label y ∈ Y. To do so,
the decision maker specifies a function f ∈ ŶX, that should have low expected loss,

E(x,y)∼P`(y, f (x)),

where ` : Y × Ŷ → R is a loss function that measures the suitability of a prediction
ŷ. Note Y and Ŷ need not be the same set, for example in conditional probability
estimation Ŷ = P(Y). If P is known to the decision maker, then this is a problem of
optimization. In general P is unknown, but the decision maker has access to a sample
S of n iid draws from P, {(xi, yi)}n

i=1. The sample is used as a proxy for expectation
under Y, and the decision maker returns the function in a restricted class F ⊆ ŶX,

fS = arg min
f∈F

1
n

n

∑
i=1

`(yi, f (xi)).
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This is known as the empirical risk minimization (ERM) rule [122]. Of central interest
are bounds on the expected loss of the ERM rule,

ES∼Pn E(x,y)∼P`(y, fS(x))

that hold regardless of the true value of P. What is unknown to the decision maker
is the distribution P. The decision maker acts by specifying a function f ∈ ŶX.
The loss incurred to the decision maker is the expected predictive performance of
f . The assumption that the sample is comprised of iid draws from P can be seen as
an experiment e ∈ T(P(X × Y), (X × Y)n), that maps each distribution to its n-fold
product. The ERM rule can be understood as a particular learning algorithm. The risk
for any learning algorithm A is,

RL(P, e,A) = ES∼Pn E f∼A(S)E(x,y)∼P`(y, f (x)).

Requiring that the risk is small for all P is then exactly a requirement that the mini-
max risk of A is small.

For the remainder of the thesis we focus on prediction problems for general experi-
ments, where the decision maker is given access to data that is not of the form of iid
draws from P.
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3

Learning in the Presence of
Corruption

In the spirit of science, there really is no such thing as a “failed experiment".
Any test that yields valid data is a valid test.

- Adam Savage, Mythbusters

The goal of supervised learning is to find a function in some hypothesis class
that accurately predicts the relationship between instances and labels. Such a func-
tion should have low expected loss according to the true distribution of instances and
labels, P. The decision maker is not given direct access to P, but rather a training set
comprising n iid samples from P. There are many algorithms for solving this prob-
lem (for example empirical risk minimization) and this problem is well understood.

There are many other types of data one could learn from. For example in semi-
supervised learning [37] the decision maker is given n instance label pairs and m
instances devoid of labels. In learning with noisy labels [4; 81; 101], the decision
maker observes instance label pairs where the observed labels have been corrupted
by some noise process. There are many other variants including, but not limited
to, learning with label proportions [103], learning with partial labels [45], multiple
instance learning [95] as well as combinations of the above.

What is currently lacking is a general theory of learning from corrupted data, as
well as means to compare the relative usefulness of different data types. Such a theo-
ry is required if one wishes to make informed economic decisions on which data sets
to acquire. For example, are n clean data better or worse than n1 noisy labels and n2

partial labels?

To answer this question we first place the problem of corrupted learning into the
abstract language of statistical decision theory. We then develop general lower and
upper bounds on the risk relative to the amount of corruption of the clean data. Fi-
nally we show examples of problems that fit into this abstract framework.
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The main contributions of this chapter are:

• Novel, general means to construct methods for learning from corrupted data
based on a generalization of the method of unbiased estimators presented by
Natarajan et al. in [101] and implicit in the earlier work of Kearns [81] (theorems
3.2 and 3.3).

• Novel lower bounds on the risk of corrupted learning (theorem 3.14).

• Means to understand compositions of corruptions (lemmas 3.12 and 3.18).

• Upper and lower bounds on the risk of learning from combinations of corrupt-
ed data (theorems 3.4 and 3.15).

• Analyses of the tightness of the above bounds.

In doing so we provide means to rank different types of corrupted data, through the
utilization of our upper and lower bounds. These results greatly extend the state of
the art in Crammer et al. [47], both in scope and in completeness. Their results only
apply to the learning of binary classifiers with label noise, and they only provide
upper bounds.

While not the complete story for all problems, the contributions outlined above make
progress toward the final goal of informed economic decisions regarding the acqui-
sition of data sets of differing quality.

Proofs are mostly relegated to the appendix of this chapter.

3.1 The Standard Prediction Problem

We consider a general prediction problem. Let ` : Z × A → R be a loss. We assume
that Z is finite. Ultimately we are interested in supervised learning problems with
finite label space Y and corruptions only on the labels. All of the techniques devel-
oped for finite Z can be transferred to this setting. For the simplicity of presentation,
we assume A is finite. Our bounds for finite A can be extended to infinite A via
PAC-Bayesian bounds or covering number arguments. We state and prove the more
general results in the appendix to this chapter.

For a distribution P ∈ P(Z), the goal of the decision maker is to minimize the
regret,

∆`(P, Q) = Ez∼PEa∼Q`(z, a)− inf
a∈A

Ez∼P`(z, a).

To do so they are given access to n iid draws from P. This can be realised as the
experiment en ∈ T(P(Z),Zn), with en(P) = Pn, the n-fold product of P. This is an
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example of a replicated experiment. They seek a learning algorithm A ∈ T(Zn, A)

with low relative risk,

∆R`(P, en,A) = ES∼Pn ∆`(P,A(S)).

Supervised learning can be seen as a specific instance of this more general problem.

3.1.1 Corrupted Prediction Problems

Due to limitations in the measurement apparatus available to the decision maker,
rather than observing z ∈ Z , it is often the case that the decision maker observes a
corrupted z̃ in a potentially different observation space Z̃ . We model the corruption
process via a transition T ∈ T(Z , Z̃). For example, we may wish to learn a relation-
ship between measured symptoms and a medical diagnosis, as provided to us by an
expert. To do so, rather than being given the experts data, we are given access to
data from one of their apprentices. Here T models the hypothesized link between
the experts and apprentices data. The goal of predicting as well as the expert remains.

For convenience we define the corrupted experiment ẽ = T ◦ e. We order the utility
of different corruptions via the relative minimax risk,

∆R`(ẽn) = min
A

max
P

∆R`(P, ẽn,A).

All of the results that follow still hold for the minimum Bayesian risk. Ideally we wish
to compare ∆R`(ẽn) with ∆R`(en), the minimum risk of the corrupted and the clean
experiments. By the general data processing (theorem 2.28), ∆R`(ẽn) ≥ ∆R`(en),
however this does not allow one to rank the utility of different T.

Even after many years of directed research, in general we can not compute ∆R`(en)

exactly, let alone ∆R`(ẽn) for general corruptions. Consequently our effort for the
remaining turns to upper and lower bounds of ∆R`(ẽn).

3.2 Corruption Corrected Losses

When convenient we use the shorthand T(P) = P̃. Natarajan et al. [101] introduced
a method of learning classifiers from data subjected to label noise, called the "method
of unbiased estimators". Here we show that this method can be generalized to other
corruptions. Recall from section 2.5.1, a transition T ∈ T(Z , Z̃) provides a linear
map T : (RZ )∗ → (RZ̃ )∗ with,

〈T(α), f̃ 〉Z̃ = 〈α, T∗ f̃ 〉Z , ∀ f̃ ∈ RZ̃ , ∀α ∈ (RZ )∗,

where T∗( f̃ ) = 〈T(z), f̃ 〉Z̃ . In words, T allows functions of the corrupted sample
to be "pulled back" to functions of the clean sample. We wish to go in the other
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direction; to transfer functions of clean samples to those of corrupted samples.

Definition 3.1. A transition T ∈ T(Z , Z̃) is reconstructible if T has a left inverse; that is
there exists a linear map R : (RZ̃ )∗ → (RZ )∗ such that R ◦ T = id(RZ )∗ .

Intuitively, T is reconstructible if there is some transformation that "undoes" the
effects of T. In general R is not a transition, the inverse of a stochastic matrix need
not be stochastic (see section 3.2.1). Many forms of corrupted learning are recon-
structible, including semi-supervised learning, learning with label noise and learning
with partial labels for all but a few pathological cases. Section 3.9 contains several
worked examples.

We call a left inverse of T a reconstruction. For concreteness, we can always take,

R = (T∗T)−1T∗,

the Moore-Penrose pseudo inverse of T. In general it will be useful to consider other
reconstructions. Reconstructible transitions are exactly those where we can transfer a
function of the clean z to one of the corrupted z̃ while preserving expectations. By
properties of adjoints,

〈P, f 〉 = 〈R ◦ T(P), f 〉 = 〈T(P), R∗( f )〉.

In words, to take expectations of f with samples from P̃ we use the corruption cor-
rected f̃ = R∗( f ). Recall the partial loss function `(−, a) ∈ RZ . Using R we can
reconstruct the partial loss from corrupted examples.

Theorem 3.2 (Corruption Corrected Loss). For all reconstructible T ∈ T(Z , Z̃) and loss
functions ` : Z × A→ R define the corruption corrected loss `T : Z̃ × A→ R, with

`T(−, a) = R∗(`(−, a)), ∀a ∈ A.

Then for all distributions P ∈ P(Z), `(P, a) = `T(P̃, a).

3.2.1 A Worked Example: Learning with Symmetric Label Noise

When learning under symmetric label noise, the decision maker is required to predict
a binary label y ∈ {−1, 1}, where y∼P. Rather than observing the true y, the decision
maker observes ỹ, where ỹ = y with probability 1− σ and ỹ = −y with probabil-
ity σ. This process can be modelled by the following transition and reconstruction
respectively;

T =

(
1− σ σ

σ 1− σ

)
, R∗ =

1
1− 2σ

(
1− σ −σ

−σ 1− σ

)
.
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Note that R is not a transition as some of the entries of R are negative. For a loss
` : {−1, 1} × A→ R, we have,(

`T(−1, a)

`T(1, a)

)
=

1
1− 2σ

(
1− σ −σ

−σ 1− σ

)(
`(−1, a)

`(1, a)

)
,

or more compactly,

`T(y, a) =
(1− σ)`(y, a)− σ`(−y, a)

1− 2σ
.

This is equivalent to the original "method of unbiased estimators presented" in [101].
In section 3.9 several examples of corruption corrected losses are given.

3.2.2 Uses of Corruption Corrected Losses in Supervised Learning

In supervised learning Z = X × Y and the goal is to find a function that predicts Y
from X with low expected loss. Given a suitable function class F ⊆ ŶX and a loss
` : Y× Ŷ → R, one attempts to find,

f ∗ = arg min
f∈F

E(x,y)∼P`(y, f (x)).

If we assume the labels have been corrupted by a corruption T ∈ T(Y, Ỹ), we can
correct for the corruption and solve for,

arg min
f∈F

E(x,ỹ)∼P̃`T(ỹ, f (x)).

3.3 Upper Bounds for Corrupted Learning

Minimizing `T on a sample S̃n∼P̃ provides a means to learn from corrupted data. Let
`(S, a) = 1

|S| ∑z∈S `(z, a), the average loss on the sample.

By an application of the PAC-Bayes bound (see theorem A.11 of the appendix to
the thesis) one has for all algorithms A ∈ T(Z̃n, A) and distributions P ∈ P(Z),

ES̃∼P̃n`T(P̃,A(S̃)) ≤ ES̃∼P̃n`T(S̃,A(S̃)) + ‖`T‖∞

√
2 log(|A|)

n
.

Since, by the construction of `T, `T(P̃,A(S̃)) = `(P,A(S̃)), the above bound yields
the following theorem.

Theorem 3.3. For all reconstructible T ∈ T(Z , Z̃), algorithms A ∈ T(Z̃n, A), distribu-
tions P ∈ P(Z) and bounded loss functions `,

ES̃∼P̃n`(P,A(S̃)) ≤ ES̃∼P̃n`T(S̃,A(S̃)) + ‖`T‖∞

√
2 log(|A|)

n
.
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A similar result also holds with high probability on draws from P̃n. This bound
shows that ERM converges to the optimum a ∈ A as ‖`T‖∞√

n for learning with corrupt-

ed data versus ‖`‖∞√
n for learning with clean data. Therefore, the ratio ‖`T‖∞

‖`‖∞
measures

the relative difficulty of corrupted versus clean learning, as judged solely by the
upper bound.

3.3.1 Upper Bounds for Combinations of Corrupted Data

Recall that our final goal is to quantify the utility of a data set comprising different
corrupted data. For example in learning with noisy labels out of n data, there could
be n1 clean, n2 slightly noisy and n3 very noisy samples and so on. More generally
we assume access to a corrupted sample S̃, made up of k different types of corrupted
data, with S̃i∼P̃ni , i ∈ [1; k].

Theorem 3.4. Let Ti ∈ T(Z , Z̃i) be a collection of k reconstructible transitions. Let P̃ =

⊗k
i=i P̃

ni
i , Z̃ = ×k

i=1Z̃
ni
i , n = ∑k

i=1 ni and ri =
ni
n . Then for all algorithms A ∈ T(Z̃ , A),

distributions P ∈ P(Z) and bounded loss functions `,

ES̃∼P̃`(P,A(S̃)) ≤ ES̃∼P̃

k

∑
i=1

ri`Ti(S̃i,A(S̃)) + K

√
2 log(|A|)

n
,

where K =

√
k
∑

i=1
ri‖`Ti‖2

∞.

A similar result also holds with high probability on draws from P̃. Theorem 3.4
is a generalization of the final bound appearing in Crammer et al. [47] that only
pertains to symmetric label noise and binary classification. Theorem 3.4 suggests the
following means of choosing data sets. Let ci be the cost of acquiring data corrupted
by Ti. First, choose data from the Ti with lowest ci‖`Ti‖2

∞ until picking more violates
the budget constraint. Then choose data from the second lowest and so on.

One must be careful when comparing upper bounds, as there may exist alternate
methods for learning from the corrupted sample with better properties. In the next
section we present arguments indicating this is not the case.

3.4 Lower Bounds for Corrupted Learning

Thus far we have developed upper bounds for ERM algorithms. In particular we
have found that reconstructible corruption does not affect the rate at which learning
occurs, it only affects constants in the upper bound. Can we do better? Are these
constants tight? To answer this question we develop lower bounds for corrupted
learning.

Here we review Le Cam’s method [86], a powerful technique for generating lower
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bounds for decision problems that very often gives the correct rate and dependence
on constants (including being able to reproduce the standard VC dimension lower
bounds for classification presented in [97]). In recent times it has been used to estab-
lish lower bounds for: differentially private learning [59], learning in a distributed set
up [135], function evaluations required in convex optimization [1] as well as generic
lower bounds in statistical estimation problems [130]. We show how this method can
be extended using the strong data processing theorem [27; 41] to provide a general
tool for lower bounding the possible performance attainable in corrupted prediction
problems.

We stress here that these techniques apply to general experiments e ∈ T(Θ,Z),
and general loss functions ` : Θ× A → R, and not only the predictive problems of
interest here.

3.4.1 Le Cam’s Method and Minimax Lower Bounds

Le Cam’s method proceeds by reducing a general decision problem to an easier
binary classification problem, before relating the best possible performance on this
classification problem to the minimax risk. Let Θ be a set of unknowns, e ∈ T(Θ,Z)
an experiment and ` : Θ × A → R a loss. Recall the regret ∆`(θ, a) = `(θ, a) −
infa′ `(θ, a′), and define the separation ρ : Θ×Θ→ R,

ρ(θ1, θ2) = inf
a

∆`(θ1, a) + ∆`(θ2, a).

The separation measures how hard it is to act well against both θ1 and θ2 simultane-
ously.

Lemma 3.5. For all experiments e, loss functions ` and θ1, θ2 ∈ Θ,

∆R`(e) ≥ ρ(θ1, θ2)

(
1
4
− 1

4
V(e(θ1), e(θ2))

)
.

where V is the variational divergence.

The reader is reminded that all proofs for this and following chapters are relegat-
ed to the appendix. This lower bound is a trade off between distances measured by ρ

and statistical distances measured by the variational divergence. A decision problem
is easy if proximity in variational divergence of e(θ1) and e(θ2) (hard to distinguish
θ1 and θ2 statistically) implies proximity of θ1 and θ2 in ρ (hard to distinguish θ1 and
θ2 with actions).

Replication and Rates

We wish to lower bound how the risk decreases as n grows. The following lemma
provides a simple way to do this.
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Lemma 3.6. For all collections of distributions Pi, Qi ∈ P(Zi), i ∈ [1; k],

V(⊗k
i=1Pi,⊗k

i=1Qi) ≤
k

∑
i=1

V(Pi, Qi).

We make use of the specific case where Pi = P and Qi = Q for all i. Lemma 3.6
and Lemma 3.5 yield the following.

Lemma 3.7. For all experiments e, loss functions `, θ1, θ2 ∈ Θ and n,

∆R`(en) ≥ ρ(θ1, θ2)

(
1
4
− n

4
V(e(θ1), e(θ2))

)
.

To use lemma 3.7, one defines θ1 = φ1(n) and θ2 = φ2(n) for n ∈ [0, ∞), with the
property,

1
4
− n

4
V(e(θ1), e(θ2)) ≥

1
8

,

or equivalently V(e(θ1), e(θ2)) ≤ 1
2n . This can always be done, for example by taking

φ1 = φ2. This yields a lower bound of,

∆R`(en) ≥
1
8

ρ(φ1(n), φ2(n)).

To obtain tight lower bounds, φ needs to be designed in a problem dependent fashion.
However, as our goal here is to reason relatively we assume that φ is given.

Other Methods for Obtaining Minimax Lower Bounds

There are many other techniques for lower bounds in terms of functions of pairwise
KL divergences [131] (for example Assouad’s method) as well as functions of pair-
wise f -divergences [68]. While such methods are often required to get tighter lower
bounds, all of what follows can be applied to these more intricate lower bounding
techniques. For the sake of conceptual clarity, we proceed with Le Cam’s method.

3.4.2 Measuring the Amount of Corruption

Rather than the experiment e, in corrupted learning we work with the corrupted
experiment ẽ. The data processing theorem for f -divergences [105] states that,

V(T(P), T(Q)) ≤ V(P, Q), ∀P, Q ∈ P(Z).

Thus any lower bound achieved by Le Cam’s method for e can be directly transferred
to one for ẽ. However, this provides us with no means to rank different T. For some
T, the data processing theorem can be strengthened, in the sense that one can find
α(T) < 1 such that,

V(T(P), T(Q)) ≤ α(T)V(P, Q), ∀P, Q ∈ P(Z).
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The coefficient α(T) provides a means to measure the amount of corruption present
in T. For example if T is constant and maps all P to the same distribution, then
α(T) = 0. If T is an invertible function, then α(T) = 1. Together with lemma 3.7
this strong data processing theorem leads to meaningful lower bounds that allow the
comparison of different corrupted experiments.

3.4.3 A Generic Strong Data Processing Theorem.

In light of the comments in section 3.4.1, following Cohen and Kempermann [41] we
present a strong data processing theorem that works for all f -divergences. Recall the
definition of an f -divergence from chapter two.

Definition 3.8. Let f : R+ → R be a convex function with f (1) = 0. For all distributions
P, Q ∈ P(Z) the f -divergence between P and Q is,

D f (P, Q) = 〈P, f
(

dQ
dP

)
〉.

Both the variational and KL divergence are examples of f divergences. For fixed
T we seek an α(T) such that,

D f (T(P), T(Q)) ≤ α(T)D f (P, Q) ∀P, Q, f .

To do so we first relate the amount T contracts P and Q to a certain deconstruction
for transitions before proving when such a deconstruction can occur.

Lemma 3.9. For all transitions T ∈ T(Z , Z̃) and distributions P, Q ∈ P(Z), if there exists
F, G ∈ T(Z , Z̃) and λ ∈ [0, 1] such that T = λF + (1− λ)G with F(P) = F(Q) then
D f (T(P), T(Q)) ≤ (1− λ)D f (P, Q) for all f .

Hence the amount T contracts P and Q is related to the amount of T that fixes P
and Q. We seek the largest λ such that a decomposition T = λF + (1− λ)G is always
possible, no matter what pair of distributions F is required to fix.

Lemma 3.10. For all transitions T ∈ T(Z , Z̃) define λ(T) = mini,j ∑k min(Tk,i, Tk,j).
Then λ ≤ λ(T) if and only if for all pairs of distributions P, Q there exists a decomposition,

T = λF + (1− λ)G,

with F, G ∈ T(Z , Z̃) and F(P) = F(Q).

Theorem 3.11 (Strong Data Processing). For all transitions T ∈ T(Z , Z̃) define α(T) =
1− λ(T). Then for all P, Q, f ,

D f (T(P), T(Q)) ≤ α(T)D f (P, Q).

The proof is a simple application of lemma 3.9 and lemma 3.10. It is easy to see
that 0 ≤ α(T) ≤ 1. Furthermore α(T) = 0 if and only if all of the columns of T are
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the same. While this α may not be the tightest for a given f , it will be shown in the
next section that it is the tightest possible for variational divergence. Furthermore, it
is generic and as such can be applied in all lower bounding methods mentioned in
section 3.4.1.

3.4.4 Relating α to Variational Divergence

It can be shown [41] that α(T) = maxx1,x2 V(T(x1), T(x2)) = 1
2 maxi,j ∑k |Tki − Tkj|,

the maximum L1 distance between the columns of A [105]. Furthermore,

α(T) = sup
P,Q∈P(X)

V(T(P), T(Q))

V(P, Q)
= sup

v∈Ω

‖T(v)‖1

‖v‖1
,

where Ω = {v : ∑ vi = 0, v 6= 0}. Hence α(T) is the operator 1-norm of T when
restricted to Ω. The above also shows that α(T) provides the tightest strong data
processing theorem possible when using variational divergence.

We have the following compositional property of α.

Lemma 3.12. For all transitions T1 ∈ T(Z , Z̃1) and T2 ∈ T(Z̃1, Z̃2),

α(T2 ◦ T1) ≤ α(T2)α(T1) ≤ min(α(T2), α(T1)).

Hence T2 ◦ T1 is at least as corrupt as either of the Ti.

The first use of α(T) occurred in the work of Dobrushin [58] where it is called the
coefficient of ergodicity and is used (much like in [27]) to prove rates of convergence
of Markov chains to their stationary distribution.

3.4.5 Lower bounds Relative to the Amount of Corruption

The strong data processing theorem and Le Cam’s method provide lower bounds for
corrupted decisions problems.

Lemma 3.13. For all experiments e, loss functions `, θ1, θ2 ∈ Θ, n and corruptions T ∈
T(Z , Z̃),

∆R`(ẽn) ≥ ρ(θ1, θ2)

(
1
4
− α(T)n

4
V(e(θ1), e(θ2))

)
.

The proof is a simple application of lemma 3.7 and the strong data processing
theorem. Suppose we have proceeded as in section 3.4.1, defining θ1 = φ1(n) and
θ2 = φ2(n) with V(e(θ1), e(θ2)) ≤ 1

2n . Letting θ̃1 = φ1(α(T)n) and θ̃2 = φ2(α(T)n)
gives V(e(θ̃1), e(θ̃2)) ≤ 1

2α(T)n . Furthermore,

∆R`(ẽn) ≥
1
8

ρ(φ1(α(T)n), φ2(α(T)n)).
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In words, if ever Le Cam’s method gives a lower bound of f (n) for repetitions of
the clean experiment, we obtain a lower bound of f (α(T)n) for repetitions of the
corrupted experiment.

Theorem 3.14. For all experiments e ∈ T(Θ,Z) and corruptions T ∈ T(Z , Z̃), if Le
Cam’s method yields a lower bound ∆R`(en) ≥ f (n) then ∆R`(ẽn) ≥ f (α(T)n).

In particular if Le Cam’s method yields a lower bound of C√
n for the clean prob-

lem, as is usual for many machine learning problems, theorem 3.14 yields a lower
bound of C√

α(T)n
for the corrupted problem. The rate at which one learns is unaffect-

ed, only the constants. A penalty factor α(T) is unavoidable no matter what learning
algorithm is used.

3.4.6 Lower Bounds for Combinations of Corrupted Data

As in section 3.3.1 we present lower bounds for combinations of corrupted data.
For example in learning with noisy labels out of n data, there could be n1 clean, n2

slightly noisy and n3 very noisy samples and so on.

Theorem 3.15. Let Ti ∈ T(Z , Z̃i), i ∈ [1; k], be k reconstructible transitions. Let T =

⊗k
i=iT

ni
i with n = ∑k

i=i nk. If Le Cam’s method yields a lower bound ∆R`(en) ≥ f (n) then

∆R`(T ◦ en) ≥ f (K) where K =

(
k
∑

i=1
α(Ti)ni

)
.

As in section 3.3.1, this bound suggest means of choosing data sets, via the fol-
lowing integer program,

arg max
n1,n2 ...nk

k

∑
i=1

α(Ti)ni subject to
k

∑
i=1

cini ≤ C,

where ci is the cost of acquiring data corrupted by Ti and C is the maximum total cost.
This is exactly the unbounded knapsack problem [50] which admits the following
near optimal greedy algorithm. First, choose data from the Ti with highest α(Ti)

ci
until

picking more violates the constraints. Then pick from the second highest and so on.

3.4.7 Applying the Bounds to Supervised Learning

Our lower bounds as stated apply to general decision problems. Of particular interest
are supervised learning problems where Z = X × Y, and the corruption is entirely
on the labels, T ∈ T(Y, Ỹ), with the instances unaffected. We show here how our
lower bounds can be applied to such problems.

Any distribution P ∈ P(X × Y) can be decomposed as a marginal over instances
πX, and a transition η ∈ T(X, Y). With slight abuse of notation we write T(P) for
the label corrupted P. Normally when constructing lower bounds for supervised
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learning problems, the marginal distribution over instances, πX is fixed and the con-
ditional distribution η is varied. For example, in Massart et al [97], lower bounds for
learning binary classifiers are constructed. There the marginal distribution over in-
stances, πX, is assumed to be concentrated on a set that the particular class of binary
classifiers under consideration shatters. For distributions P1 and P2 with the same
marginals over instances,

V(P1, P2) = Ex∼πX V(η1(x), η2(x)).

Furthermore, when corrupted by noise only on the labels,

V(T(P1), T(P2)) = Ex∼πX V(T ◦ η1(x), T ◦ η2(x)) ≤ α(T)V(P1, P2).

Therefore only properties of the label corruption are required to apply our lower
bounding techniques.

3.5 Measuring the Tightness of the Upper Bounds and Lower
Bounds

In the previous sections we have shown upper bounds that depend on ‖`T‖∞ as well
as lower bounds that depend on α(T). Here we compare these bounds.

Recall from theorem 3.2 `T(−, a) = R∗(`(−, a)). The worst case ratio ‖`T‖∞
‖`‖∞

is de-

termined by the operator norm of R∗. For a linear map R : RX → RY define,

‖R‖1 := sup
v∈RX

‖Rv‖1

‖v‖1
and ‖R‖∞ := sup

v∈RX

‖Rv‖∞

‖v‖∞

which are two operator norms of R. They are equal to the maximum absolute column
and row sum of R respectively [22]. Hence ‖R‖1 = ‖R∗‖∞.

Lemma 3.16. For all losses `, T ∈ T(Z , Z̃) and reconstructions R, ‖`T‖∞
‖`‖∞

≤ ‖R∗‖∞.

Lemma 3.17. If T ∈ T(Z , Z̃) is reconstructible, with reconstruction R, then,

1
α(T)

≤ 1/
(

inf
u∈RX

‖Tu‖1

‖u‖1

)
≤ ‖R∗‖∞.

Note that for lower bounds we look at the best case separation of columns of T, for
upper bounds we essentially use the worst. We also get the following compositional
theorem.

Lemma 3.18. If T1 ∈ T(Z , Z̃1) and T2 ∈ T(Z̃1, Z̃2) are reconstructible, with reconstruc-
tions R1 and R2, then T2 ◦ T1 is reconstructible with reconstruction R1 ◦ R2. Furthermore,

1
α(T1)α(T2)

≤ ‖R1 ◦ R2‖1 ≤ ‖R1‖1‖R2‖1.
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Proof. The first statement is obvious. For the first inequality simply use lemma 3.17
followed by lemma 3.12. The second inequality is an easy to prove property of
operator norms.

3.5.1 Comparing Theorems 3.3 and 3.14

We have shown the following implication, for all reconstructible T,

C1√
n
≤ ∆R`(en) ≤

C2‖`‖∞√
n
⇒ C1√

α(T)n
≤ ∆R`(ẽn) ≤

C2‖`T‖∞√
n

.

By lemma 3.17, in the worst case ‖`T‖∞ ≥ ‖`‖∞
α(T) . Thus in the worst case over all

losses, we arrive at upper and lower bounds for the corrupted problem that are at
least factor of 1√

α(T)
apart. We do not know if this is the fault of our upper or lower

bounding techniques. However, for specific ` and T this gap can be smaller.

For example, in the problem of learning with symmetric label noise discussed in
section 3.2.1, with misclassification loss `01,

α(T) = 1− 2σ and ‖`01,T‖ =
1− σ

1− 2σ
,

respectively. The worst case ratio of upper and lower bounds over all losses is of
order 1√

1−2σ
. For misclassification loss the actual ratio is 1−σ√

1−2σ
. For all σ ∈ [0, 2

10 ], i.e.

up to 0.2 flip probability, this ratio is never larger than 4√
15
≈ 1.03.

3.5.2 Comparing Theorems 3.4 and 3.15

Assuming cT is the cost of acquiring data corrupted by T, theorem 3.15 ranks the
utility of different corruptions by 1

‖`T‖2
∞cT

where as theorem 3.15 ranks by α(T)
cT

. By

lemma 3.17, 1
α(T) is a proxy for ‖`‖∞

‖`T‖∞
meaning both theorems are "doing the same

thing". In theorems 3.15 and 3.4 we have, respectively, best case and a worst case
loss specific method for choosing data sets. Theorem 3.4 combined with 1emma 3.16
provides a worst case loss insensitive method for choosing data sets.

3.6 Canonical Losses and Convexity

Recall the notion of a canonical loss from theorem 2.16 of chapter 2. All canonical
losses remain convex when corrected for corruption.

Theorem 3.19 (Preservation of Convexity). Let L : Z × C → R be a canonical loss, i.e.
C ⊆ 1⊥Z is a convex set and,

L(z, v) = v(z) + Ψ(v),
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for a convex function Ψ. For all reconstructible T ∈ T(Z , Z̃) there exists a reconstruction R
with,

LT(z̃, v) = 〈R(δz̃), v〉+ Ψ(v).

Furthermore this loss is convex in v.

Therefore we need not abandon the framework of convex surrogates when the
corruption is known.

3.7 Learning when the Corruption Process is Partially Known

Thus far we have considered the problem of learning when T is known. Here we
consider the problem of when T ∈ C, a subset of possible reconstructible corruptions
C ⊂ T(Z , Z̃). For example when learning classifiers under symmetric label noise [4],
the corruption is of the form,

Tσ =

(
1− σ σ

σ 1− σ

)
,

where σ ∈ (0, 1
2 ). There are three ways in which one can proceed.

If we assume access to a "gold standard" sample S∼P as well as a corrupted sam-
ple S̃, we can use methods akin to those in Kearns [81]. One covers the set C to some
tolerance ε with a finite cover {Ti}k

i=1. For each Ti in the cover, estimate an action ai
using `Ti and the corrupted sample. Finally, choose the ai that best predicts the gold
standard sample. Using theorem 3.3, we know that for a large enough corrupted
sample, one of the ai has performance close to that of the optimal a.

One can attempt to estimate T from the corrupted sample. Under certain distribu-
tional assumptions (such as separability), Menon et al. [100] surveys methods for
estimating T for the problem of learning under asymmetric label noise. While there
is currently no firm theory on the performance of these estimators, they are shown
in [100] to work empirically. These methods can be easily extended to general cor-
ruptions.

In both of the above methods, operator norms can provide suitable losses/metrics
that can guide their use.

Lemma 3.20. Let T, T′ ∈ T(Z , Z̃) be reconstructible. Then,

‖`T − `T′‖∞ =
∥∥R− R′

∥∥
1 ‖`‖∞ .

The quantity ‖R− R′‖1 is a statistically motivated distance that can be used when
covering C. Furthermore, it can be used when designing loss functions for estimating
T.
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Finally, one can look for loss functions that are robust to C. We explore this approach
further in section 3.22 and in chapter 4.

3.8 Conclusion

Real world data sets are amalgamations of data of variable type and quality. Under-
standing how to learn from and compare different corrupted data sets is therefore a
problem of great practical importance. Theorems 3.4 and 3.15 provide means to do
this. Future work will attempt to further refine these methods as well as extend the
framework to non reconstructible problems such as multiple instance learning and
learning with label proportions.
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Appendix to Chapter 3

3.9 Examples

Here we show examples of common corrupted machine learning problems.

3.9.1 Noisy Labels

We consider the problem of learning from noisy binary labels [4; 101]. Here σi is the
probability that class i is has its label flipped. We have,

T =

(
1− σ−1 σ1

σ−1 1− σ1

)
R∗ =

1
1− σ−1 − σ1

(
1− σ1 −σ−1

−σ1 1− σ−1

)
.

This yields,

`T(y, a) =
(1− σ−y)`(y, a)− σy`(−y, a)

1− σ−1 − σ1
.

The above equation is lemma 1 in Natarajan et al. [101] and is the original method
of unbiased estimators. Interestingly, even if ` is positive, `T can be negative. If the
noise is symmetric with σ−1 = σ1 = σ and ` is 01 loss then,

`T(y, a) =
`01(y, a)− σ

1− 2σ
,

which is just a rescaled and shifted version of 01 loss. If we work in the realizable
setting, i.e. there is some f ∈ F with,

E(x,y)∼P`01(y, f (x)) = 0,

then the above provides an interesting correspondence between learning with sym-
metric label noise and learning under distributions with large Tsybakov margin [6].
Taking σ = 1

2 − h with P separable in turn implies P̃ has Tsybakov margin h. This
means bounds developed for this setting, such as in Massart et al [97], can be trans-
ferred to the setting of learning with symmetric label noise. Our lower bound repro-
duces the results of Massart et al [97].

Below is a table of the relevant parameters for learning with noisy binary labels.
These results directly extend those presented in [81] that considered only the case of
symmetric label noise.
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Learning with Label Noisy (Binary)

T

(
1− σ−1 σ1

σ−1 1− σ1

)

R∗ 1
1−σ−1−σ1

(
1− σ1 −σ−1

−σ1 1− σ−1

)
α(T) |1− σ−1 − σ1|
‖R∗‖∞

1
|1−σ−1−σ1| max(1− σ−1 + σ1, 1− σ1 + σ−1)

‖`01,T‖∞
1

|1−σ−1−σ1| max(1− σ−1, 1− σ1, σ−1, σ1)

We see that as long as σ−1 + σ1 6= 1, T is reconstructible. The pattern we see in this
table is quite common. ‖R∗‖∞ tends to be marginally greater than 1

α(T) , with ‖`01,T‖∞

less than both. In the symmetric case our lower bound reproduces that of Aslam and
Decatur [5].

Finally, when working with symmetric label noise (σ−1 = σ1 = σ),

‖Rσ − Rσ′‖1 =
2|σ− σ′|

|1− 2σ||1− 2σ′| .

For fixed true noise rate σ, the presence of a factor |1 − 2σ′| in the denominator
means that underestimating σ is preferred to overestimating. Hence when designing
estimates for σ, those with negative bias might perform better than those that are
unbiased or are positively biased. Furthermore, when covering noise rates, as per
the discussion in 3.7, more focus should be given to higher noise rates than to lower.
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Fig. 3.1: Plot of ‖Rσ − Rσ′‖1 for σ = 0.2. ‖Rσ − Rσ′‖1 is a measure of how far apart two
corruptions are. This distance measure can be used when constructing estimators for the

corruption process T. See text.
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3.9.2 Semi-Supervised Learning

We consider the problem of semi-supervised learning [37]. Here 1− σi is the proba-
bility class i has a missing label. We first consider the easier symmetric case where
σ−1 = σ1 = σ.

Symmetric Semi-Supervised Learning

T


σ 0

0 σ

1− σ 1− σ


R∗


1−2σ+2σ2

1−3σ+5σ2−3σ3
−σ2

1−3σ+5σ2−3σ3

−σ2

1−3σ+5σ2−3σ3
1−2σ+2σ2

1−3σ+5σ2−3σ3

σ
1−2σ+3σ2

σ
1−2σ+3σ2


α(T) σ

‖R∗‖∞
1
σ

‖`01,T‖∞
1−2σ+2σ2

2σ+3σ−5σ2

Once again ‖`01,T‖∞ ≤ 1
α(T) . Our lower bound confirms that in general unlabelled

data does not help [11]. Rather than using the method of unbiased estimators, one
could simply throw away the unlabelled data leaving behind σn labelled instances on
average. To make further progress in this problem, as noted elsewhere, normally one
assumes some form of compatibility between the marginal distribution of instances
and the optimal classifier. In principle, restricted versions of Le Cams method and
the strong data processing inequality could be used to give lower bounds under these
different assumptions. As our interest here are minimax bounds, we do not pursue
these methods.

Semi-Supervised Learning

T


σ−1 0

0 σ1

1− σ−1 1− σ1


α(T) maxi σi

Other parameters for the more general case are omitted due to complexity (they
involve the maximum of three 4th order rational equations). They are available in
closed form.

3.9.3 Three Class Symmetric Label Noise

Here we present parameters for the three class variant of symmetric label noise. We
have Ỹ = Y = {1, 2, 3} with P(Ỹ = ỹ|Y = y) = 1− σ, if y = ỹ and σ

2 otherwise.
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Learning with Symmetric Label Noisy (Multiclass)

T


1− σ σ

2
σ
2

σ
2 1− σ σ

2
σ
2

σ
2 1− σ


R∗


2−σ

2−3σ
−σ

2−3σ
−σ

2−3σ
−σ

2−3σ
2−σ

2−3σ
−σ

2−3σ
−σ

2−3σ
−σ

2−3σ
2−σ

2−3σ


α(T) |1− 3

2 σ|
‖R∗‖∞

2+σ
|2−3σ|

‖`01,T‖∞
2

|2−3σ| max(σ, 1− σ)

We see that as long as σ 6= 2
3 , T is reconstructible. Once again ‖`01,T‖∞ ≤ 1

α(T) .

3.9.4 Partial Labels

Here we follow [45] with Y = {1, 2, 3} and Ỹ = {0, 1}Y the set of partial labels. A
partial label of (0, 1, 1) indicates that the true label is either 2 or 3 but not 1. We
assume that a partial label always includes the true label as one of the possibilities
and furthermore that spurious labels are added with probability σ.

Learning with Partial Labels

T



0 0 (1− σ)2

0 (1− σ)2 0

0 (1− σ)σ (1− σ)σ

(1− σ)2 0 0

(1− σ)σ 0 (1− σ)σ

(1− σ)σ (1− σ)σ 0

σ2 σ2 σ2


α(T) 1− σ

We see that as long as σ 6= 1, T is reconstructible. In this case ‖`01,T‖∞ and ‖R∗‖∞ are
given by more complicated expressions (however they are both available in closed
form). We display their interrelation in a graph in below. To the best of our knowl-
edge, no upper and lower bounds are present in the literature for this problem.
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Fig. 3.2: Upper and lower bounds for the problem of learning from partial labels, see text.

3.10 Proof of Theorem 3.4

We actually prove a more general theorem, that works for infinite action sets.

Theorem. Let Ti ∈ T(Z , Z̃i) be a collection of k reconstructible transitions. Let P̃ =

⊗k
i=i P̃

ni
i , Z̃ = ×k

i=1Z̃
ni
i , n = ∑k

i=1 ni and ri =
ni
n . Then for all algorithms A ∈ T(Z̃ , A),

priors π ∈ P(A), distributions P ∈ P(Z) and bounded loss functions `,

ES̃∼P̃`(P,A(S̃)) ≤ ES̃∼P̃

k

∑
i=1

ri`Ti(S̃i,A(S̃)) + K

√
2ES∼Pn DKL(A(S), π)

n
.

where K =

√
k
∑

i=1
ri‖`Ti‖2

∞.

Proof. Define L(S̃, a) = ∑k
i=1 ∑z̃∈S̃i

`Ti(zi, a), the sum of the corrupted losses on the
sample. We have by theorem A.3 of the appendix,

ES̃∼QEa∼A(S̃) −
1
β

log(ES̃′∼Qe−βL(S̃′,a)) ≤ ES̃∼Q

[
L(S̃,A(S̃)) + DKL(A(S), π)

β

]
k

∑
i=1

niES̃∼QEa∼A(S̃) −
1
β

log(Ez̃∼P̃i
e−β`Ti (z̃,a)) ≤ ES̃∼Q

[
L(S̃,A(S̃)) + DKL(A(S), π)

β

]
where the first line follows from the theorem and the second from properties of the
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cumulant generating function. Invoking lemma A.8 of the appendix yields,

k

∑
i=1

ni

(
ES̃∼Q`Ti(P̃i,A(S̃))−

‖`Ti‖2
∞β

2

)
≤ ES̃∼Q

[
L(S̃,A(S̃)) + DKL(A(S), π)

β

]
.

As the Ti are reconstructible,

ES̃∼Q`(P,A(S̃)) ≤ 1
n

ES̃∼Q

[
L(S̃,A(S̃)) + DKL(A(S), π)

β

]
+

(
k
∑

i=1
ri‖`Ti‖2

∞

)
β

2
.

Optimizing over β yields the desired result.

Theorem 3.4 is recovered by taking A finite, π uniform on A and upper bounding
DKL(A(S), π) ≤ log(|A|).

3.11 Le Cam’s Method and Minimax Lower Bounds

The development here closely follows [59] with some streamlining. We consider
a general decision problem with unknowns Θ, observation space Z and loss ` :
Θ× A→ R. Recall the regret,

∆`(θ, a) = `(θ, a)− inf
a′∈A

`(θ, a′).

For any learning algorithm A ∈ T(Z , A), we wish to lower bound,

sup
θ

Ez∼e(θ)∆`(θ,A(z)).

The method proceeds by reducing a general decision problem to an easier binary
classification problem. We consider a supremum over a restricted set {θ1, θ2}. Using
Markov’s inequality we then relate this to the minimum 01 loss in a particular bi-
nary classification problem. Finally one finds a lower bound for this quantity. With
θ∼{θ1, θ2} meaning θ is drawn uniformly at random from the set {θ1, θ2}, we have,

sup
θ

Ez∼e(θ)Ea∼A(z)∆`(θ, a) ≥ sup
{θ1,θ2}

Ez∼e(θ)Ea∼A(z)∆`(θ, a)

≥ Eθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)∆`(θ, a)

≥ δEθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)[[∆`(θ, a) ≥ δ]].

Recall the separation ρ : Θ× Θ → R, ρ(θ1, θ2) = infa ∆`(θ1, a) + ∆`(θ2, a). The sep-
aration measures how hard it is to act well against both θ1 and θ2 simultaneously.
We now assume ρ(θ1, θ2) > 2δ. Define f : A → {θ1, θ2, error} where f (a) = θi if
∆`(θi, a) < δ and error otherwise. This function is well defined as if there exists an
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action a with ∆`(θ1, a) < δ and ∆`(θ2, a) < δ then ρ(θ1, θ2) < 2δ, a contradiction. Let
Â be the classifier that first draws a∼A(z) and then outputs f (a). We have,

sup
θ

Ez∼e(θ)Ea∼A(z)∆`(θ, a) ≥ δEθ∼{θ1,θ2}Ez∼e(θ)Eθ′∼Â(z)[[θ 6= θ′]]

≥ δ inf
Â∈T(Z ,Θ)

Eθ∼{θ1,θ2}Ez∼e(θ)Eθ′∼Â(z)[[θ 6= θ′]]

= δ

(
1
2
− 1

2
V(e(θ1), e(θ2))

)
,

where the first line is a rewriting of of the previous in terms of the classifier Â, the
second takes an infimum over all classifiers and the final line is a standard result in
theoretical statistics [105]. Taking δ = ρ(θ1,θ2)

2 yields lemma 3.5.

3.12 Extension of Le Cam’s Method to Bayesian Risk

Rather than lower bounding supθ Ez∼e(θ)∆`(θ,A(z)), a Bayesian with some knowl-
edge about the unknown, given in the form of a prior π ∈ P(Θ), wishes to lower
bound the Bayesian risk,

Eθ∼πEz∼e(θ)∆`(θ,A(z)).

Following from the second line of the derivation of Le Cam’s method, we have a
lower bound,

Eθ∼{θ1,θ2}Ez∼e(θ)Ea∼A(z)∆`(θ, a) =
1
2
R`(θ1, e,A) + 1

2
R`(θ2, e,A)

≥ ρ(θ1, θ2)

(
1
4
− 1

4
V(e(θ1), e(θ2))

)
.

Let µ ∈ P(Θ×Θ) be any distribution with both marginals over Θ equal to π. Aver-
aging over this distribution we have,

Eθ∼πR`(θ, e,A) ≥ E(θ1,θ2)∼µρ(θ1, θ2)

(
1
4
− 1

4
V(e(θ1), e(θ2))

)
.

This insight leads to a Bayesian version of lemma 3.5.

Lemma 3.21. Let µ ∈ P(Θ×Θ) be any distribution with both marginals over Θ equal to
π. Then for all experiments e and loss functions `,

∆Rπ
` (e) ≥ E(θ1,θ2)∼µρ(θ1, θ2)

(
1
4
− 1

4
V(e(θ1), e(θ2))

)
.

Using this in place of lemma 3.5 leads to Bayesian versions of theorems 3.14 and
3.15.
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3.13 Proof of Lemma 3.6

Proof. Firstly V is a metric on P(×k
n=1Zi) [105]. Thus,

V(⊗k
i=1Pi,⊗k

i=1Qi) = V(P1 ⊗ (⊗k
i=2Pi), Q1 ⊗ (⊗k

i=2Qi))

≤ V(P1 ⊗ (⊗k
i=2Pi), Q1 ⊗ (⊗k

i=2Pi)) + V(Q1 ⊗ (⊗k
i=2Pi), Q1 ⊗ (⊗k

i=2Qi))

= V(P1, Q1) + V(⊗k
i=2Pi,⊗k

i=2Qi),

where the first line is by definition, the second as V is a metric and the third is easily
verified from the definition of V. To complete the proof proceed inductively.

3.14 Proof of Lemma 3.9

Proof.

D f (T(P), T(Q)) = D f (λF(P) + (1− λ)G(P), λF(Q) + (1− λ)G(Q))

≤ λD f (F(P), F(Q)) + (1− λ)D f (G(P), G(Q))

= (1− λ)D f (G(P), G(Q))

≤ (1− λ)D f (P, Q),

where the first line follows from the definition, the second from the joint convexity
of f -divergences [105], the third because F(P) = F(Q) and D f (P, P) = 0 and finally
the fourth is from the standard data processing inequality.

3.15 Proof of Lemma 3.10

The proof of the forward implication is lemma 2 of [27]. We prove the reverse impli-
cation.

Proof. As this decomposition works for all pairs of distributions we can take P =

δxi = ei and Q = δxj = ej. As F(P) = F(Q) we must have Fki = Fkj = vk for all k. As
all of the entries of (1− λ)G are positive, we have λvk ≤ Tki and λvk ≤ Tkj. Hence
λvk ≤ min(Tki, Tkj). Summing over k and remembering that F is column stochastic
gives λ ≤ ∑k min(Tk,i, Tk,j). As i and j are arbitrary we have the desired result.

3.16 Proof of Theorem 3.15

Proof. Let

T = ⊗k
i=iT

ni
i = T1 ⊗ · · · ⊗ T1︸ ︷︷ ︸

n1 times

⊗ T2 ⊗ · · · ⊗ T2︸ ︷︷ ︸
n2 times

· · · ⊗ Tk ⊗ · · · ⊗ Tk︸ ︷︷ ︸
nk times

.
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One has T(en(θ)) = T1(e(θ))n1 ⊗ T2(e(θ))n2 ⊗ · · · ⊗ Tk(e(θ))nk . By lemma 3.6,

V(T(en(θ1)), T(en(θ2)) ≤
k

∑
i=1

niV(Ti(e(θ1)), Ti(e(θ2)))

≤
(

k

∑
i=1

α(Ti)ni

)
V(e(θ1), e(θ2)).

Now proceed as in the proof of theorem 3.14.

3.17 Proof of Lemma 3.12

Proof.

α(T2T1) = sup
P,Q∈P(Z)

‖T2 ◦ T1(P)− T2 ◦ T1(Q)‖1

‖P−Q‖1

= sup
P,Q∈P(Z)

‖T2 ◦ T1(P)− T2 ◦ T1(Q)‖1

‖T1(P)− T2(Q)‖1

‖T1(P)− T2(Q)‖1

‖P−Q‖1

≤ sup
P,Q∈P(Z)

‖T2 ◦ T1(P)− T2 ◦ T1(Q)‖1

‖T1(P)− T2(Q)‖1
sup

P,Q∈P(Z)

‖T1(P)− T2(Q)‖1

‖P−Q‖1

≤ sup
P,Q∈P(Z̃1)

‖T2(P)− T2(Q)‖1

‖P−Q‖1
sup

P,Q∈P(Z)

‖T1(P)− T2(Q)‖1

‖P−Q‖1

= α(T2)α(T1)

Where the first line follows from the definitions, the second follows if T1(P) 6= T2(Q)

and the rest are simple rearrangements. For the final inequality, remember that
α(T) ≤ 1.

3.18 Proof of Lemma 3.16

Proof. By definition ‖ ˜̀‖∞ = supz,a | ˜̀(z, a)| = supa‖ ˜̀a‖∞. Hence,

‖ ˜̀‖∞ = sup
a
‖ ˜̀a‖∞

≤ sup
a
‖R∗‖∞‖`a‖∞

= ‖R∗‖∞‖`‖∞,

where the second line follows from the definition of the operator norm ‖R∗‖∞.

3.19 Proof of Lemma 3.17

Proof. Firstly ‖R‖1 = ‖R∗‖∞ [22]. From the definition of ‖R‖1 we have,
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‖R‖1 = sup
v∈RY

‖Rv‖1

‖v‖1

≥ sup
u∈RX

‖RTu‖1

‖Tu‖1

= sup
u∈RX

‖u‖1

‖Tu‖1

= 1/
(

inf
u∈RX

‖Tu‖1

‖u‖1

)
.

This proves the first inequality. Recall one of the equivalent definitions of α(T) from
section 3.4.4,

α(T) = sup
v∈Ω

‖T(v)‖1

‖v‖1
,

where Ω = {v ∈ RX : ∑ vi = 0, v 6= 0}. Hence infu∈RX
‖Tu‖1
‖u‖1

≤ α(T).

3.20 Proof of Theorem 3.19

Proof. As L is canonical, its partial loss function is given by L(−, v) = v + Ψ(v)1Z .
By definition, the partial loss,

LT(−, v) = R∗(L(−, v)) = R∗(v) + Ψ(v)R∗(1Z ).

If |Z| = |Z̃ |, then T is reconstructible if and only if T is invertible. As T is column
stochastic,

1Z = T∗(1Z̃ ).

This yields,
R∗(1Z ) = R∗T∗(1Z̃ ) = 1Z̃ .

For the more general case where |Z| < |Z̃ |, we have for all T and all v ∈ 1⊥Z ,

〈T(v),1Z̃ 〉 = 〈v, T∗(1Z̃ )〉
= 〈v,1Z 〉
= 0.

Therefore T(1⊥Z ) ⊆ 1⊥Z̃ . As left inverses as not unique, we can further restrict R to
those with R(1⊥Z̃ ) ⊆ 1⊥Z , or dually those with R∗(1Z ) = 1Z̃ . There is always such an
R, as the restriction of T to 1⊥Z is also left invertible. Furthermore, T(1Z ) /∈ 1⊥Z̃ , as
T(1Z ) nonnegative entries. Therefore, we can take R restricted to 1⊥Z̃ to be the left
inverse of T restricted to 1⊥Z , with RT(1Z ) = 1Z . Such an R can then be extended to
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all of RZ̃ . Finally, by definition, LT(z̃, v) = 〈δz̃,LT(−, v)〉, yielding,

LT(z̃, v) = 〈δz̃, R∗(v)〉+ 〈δz̃, R∗(1Z )〉Ψ(v)

= 〈R(δz̃), v〉+ Ψ(v),

where the last line is by properties of adjoints. This function is the sum of two
functions, one linear in v the other convex and is therefore convex in v.

3.21 Corrupted Learning when Clean Learning is Fast

The contents of this chapter largely solve the problem of learning from corrupted
data, when learning on the original problem occurs at the standard 1√

n rate. There are
many conditions under which clean learning is fast, here we focus on the Bernstein
condition presented in [17; 120].

Definition 3.22. Let P ∈ P(Z), ` a loss and aP = arg mina Ez∼P`(z, a). A pair (`, P)
satisfies the Bernstein condition with constant K if for all a ∈ A,

Ez∼P(`(z, a)− `(z, aP))
2 ≤ K Ez∼P`(z, a)− `(z, aP)

When A is finite, such a condition leads to 1
n rates of convergence. From theorem

A.12 we have the following theorem.

Theorem 3.23. (Fast Rates for ERM) Let A be ERM with A finite. If (`, P) satisfies the
Bernstein condition then for some constant C > 0,

ES∼Pn`(P,A(S))− `(P, aP) ≤
C log(|A|)

n
.

Furthermore with probability at least 1− δ on a draw from Pn one has,

`(P,A(S))− `(P, aP) ≤
C
(
log(|A|) + log

( 1
δ

))
n

.

Proof. First, define `P(z, a) = `(z, a) − `(z, aP). `P measures the loss relative to the
best action for the distribution P. It is easy to verify that for bounded `, ‖`P‖∞ ≤
2‖`‖∞. We now utilize theorem A.12 with `P and π uniform on A. This yields,

ES∼Pn
[
`P(P,A(S))− γEz∼P`

2
P(z,A(S))

]
≤ 1

n
ES∼Pn

[
`P(S,A(S)) + ‖`P, ‖∞

(
log(|A|)

β

)]

with γ = (eβ−1−β)
β‖`P‖∞

. Firstly ERM minimizes the right hand side of the bound meaning,

1
n

ES∼Pn

[
`P(S,A(S)) + ‖`P‖∞

(
log(|A|)

β

)]
≤ 1

n

[
‖`P‖∞

(
log(|A|)

β

)]
.
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To see this consider the algorithm that always outputs aP, this algorithm generalizes
very well however it may be suboptimal on the sample. Secondly (`, P) satisfies the
Bernstein condition with constant K. Therefore,

(1− γK)ES∼Pn`P(P,A(S)) ≤ 1
n

[
‖`P‖∞

(
log(|A|)

β

)]
.

Finally chose β small enough so that γK ≤ 1. This can always be done as γ → 0 as
β→ 0+. The high probability version proceeds in a similar way.

A natural question to ask is when does (`T, P̃) satisfy the Bernstein condition?

Theorem 3.24. If (`T, P̃) satisfies the Bernstein condition with constant K then (`, P) also
satisfies the Bernstein condition with the same constant.

Proof.

KEz∼P`(z, a)− `(z, aP) = KEz̃∼P̃`T(z, a)− `T(z, aP)

≥ Ez̃∼P̃(`T(z̃, a)− `T(z̃, aP))
2

= Ez∼PEz̃∼T(z)(`T(z̃, a)− `T(z̃, aP))
2

≥ Ez∼P(Ez̃∼T(z)`T(z̃, a)−Ez̃∼T(z)`T(z̃, aP))
2

= Ez∼P(`(z, a)− `(z, aP))
2,

where the first line follows from the definition of ` and because aP = aP̃, the second
as (`T, P̃) satisfies the Bernstein condition and finally we have used the convexity of
f (x) = x2.

This theorem (almost) rules out pathological behaviour where ERM learns quick-
ly from corrupted data and yet slowly for clean data. The converse of theorem 3.24
is not true, for example consider the case of PAC learning versus PAC learning with
arbitrary instance dependent noise. In some cases the Bernstein condition can be
transfered from the clean problem to the corrupted problem, as we now explore.

Definition 3.25. Let T ∈ T(Z , Z̃) and ` a loss. A pair (`, T) are η-compatible if for all
z ∈ Z and a1, a2 ∈ A,

Ez̃∼T(z)(`T(z̃, a1)− `T(z̃, a2))
2 ≤ η(`(z, a1)− `(z, a2))

2.

Theorem 3.26. If the pair (`, P) satisfies the Bernstein condition with constant K and the
pair (`, T) are η-compatible then (`T, P̃) satisfies the Bernstein condition with constant ηK.
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Proof.

Ez̃∼P̃(`T(z̃, a)− `T(z̃, aP))
2 = Ez∼PEz̃∼T(z)(`T(z̃, a)− `T(z̃, aP))

2

≤ ηEz∼P(`(z, a)− `(z, aP))
2

≤ ηKEz∼P`(z, a)− `(z, aP)

= ηKEz̃∼P̃`T(z̃, a)− `T(z̃, aP),

where we have first used η-compatibility, then the fact that (`, P) satisfies the Bern-
stein condition with constant K and finally the definition of `T.

While by no means the final line in fast corrupted learning, this theorem does
allow one to prove interesting results in the binary classification setting.

Theorem 3.27. Let T be label noise, T =

(
1− σ−1 σ1

σ−1 1− σ1

)
, then the pair (`01, T) is

η-compatible with η = max(
(

1+σ−1−σ1
1−σ−1−σ1

)2
,
(

1+σ1−σ−1
1−σ−1−σ1

)2
).

Proof. Due to the symmetry of the left and right hand sides of the Bernstein condi-
tion, one only needs to check the case where a1 = 1, a2 = −1. Recall,

`01,T(ỹ, a) =
(1− σ−y)`01(ỹ, a)− σy`01(−ỹ, a)

1− σ−1 − σ1

=
(1− σ−y + σy)`01(ỹ, a)− σy

1− σ−1 − σ1
.

For y = 1 it is easy to confirm (`01(1, 1)− `01(1,−1))2 = 1. We have,

`01,T(ỹ, 1)− `01,T(ỹ,−1) =
(1− σ−y + σy)(`01(ỹ, 1)− `01(ỹ,−1))

1− σ−1 − σ1

=
−ỹ(1− σ−y + σy)

1− σ−1 − σ1
.

Squaring, taking maximums and finally expectations yields the desired result.

One very useful example of a pair (P, `) satisfying the Bernstein condition with
constant 1 is when P is separable, ` is 01 loss and the Bayes optimal classifier is in
the function class. Theorem 3.27 guarantees that as long as σ−1 + σ1 6= 0 (i.e. it is
possible to learn from noisy labels), one learns at a fast rate from noisy examples.

3.22 Corruption Invariant Loss Functions

We focus here on the problem of supervised learning. Given a label space Y, an
instance space X, a distribution P ∈ P(X × Y) and a loss ` : Y× A → R, the goal of
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the decision maker is to find a function f ∈ F ⊂ AX with low expected loss,

E(x,y)∼P`(y, f (x)).

By marginalising out over the instances, we can think of P and f as defining a dis-
tribution Q ∈ P(A× Y). The loss ` allows the decision maker to order distributions,
we say Q1 ≤` Q2 if,

E(a,y)∼Q1
`(y, a) ≤ E(a,y)∼Q2

`(y, a).

Abstractly, the problem of supervised learning reduces to finding the minimal Q in
this ordering, where Q is specified by P and f ∈ F . Given a corruption T ∈ T(Y, Ỹ),
rather than the clean distribution Q, the decision maker works with a corrupted dis-
tribution (a, ỹ)∼T(Q). To sample from T(Q), first sample (a, y)∼Q, and then sample
ỹ∼T(y). While the decision maker wants to compare clean Q, they can do so only by
comparing T(Q). If T is known, they can correct for the corruption by using the loss
`T.

However, if all the decision maker knows is that T ∈ C ⊂ T(Y, Ỹ), then assum-
ing different corruptions may lead to different orderings. For T, T′ ∈ C, there is no
guarantee that,

T(Q1) ≤`T T(Q2)⇔ T(Q1) ≤`T′
T(Q2).

In words, assuming the wrong corruption may lead to the wrong ordering. Corruption
immune losses are precisely those where the ordering is unaltered.

Definition 3.28 (Order Equivalence). Let `, `′ : Ỹ× A→ R be loss functions. ` is order
equivalent to `′ if for all Q̃1, Q̃2 ∈ P(A× Ỹ),

Q̃1 ≤` Q̃2 ⇔ Q̃1 ≤`′ Q̃2.

Definition 3.29. Let C ⊂ T(Z ,Z) be a set of reconstructible transitions. A loss ` is
immune to C if for all T, T′ ∈ C, `T is order equivalent to `T′ .

Lemma 3.30. If ` is immune to C, then for all T, T′ ∈ C and for all Q1, Q2 ∈ P(A×Y),

Q1 ≤` Q2 ⇔ T′(Q1) ≤`T T′(Q2).

Proof. Firstly, Q1 ≤` Q2 ⇔ T′(Q1) ≤`′T
T′(Q2) from the definition of corruption

correction. As `T is order equivalent to `T′ , T′(Q1) ≤`′T
T′(Q2)⇔ T′(Q1) ≤`T T′(Q2).

The converse of this lemma is also true in certain situations. For example if Y = Ỹ
and idY ∈ C. Chapter 4 contains an example of a corruption immune loss. Order
equivalence of loss functions is characterized by the following lemma.

Lemma 3.31. ` is order equivalent to `′ if and only if there exists a constants α > 0 and β

such that,
`(ỹ, a) = α`′(ỹ, a) + β, ∀ỹ ∈ Ỹ, ∀a ∈ A.
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This lemma is theorem 2 in section 7.9 of [54]. This lemma allows one to test
whether a loss is immune to C.

Theorem 3.32. Fix T ∈ C. A loss ` is immune to C if and only if for all T′ ∈ C and for all
a ∈ A, the equation,

(R∗ − α(R′)∗)`(−, a) = β1Ỹ,

has a solution in α and β, with α > 0.

Proof. By definition, `T must be order equivalent to `T′ for all T, T′ ∈ C. As order
equivalence is a transitive relationship, we can fix T. The rest of the theorem follows
from lemma 3.31.
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4

An Average Classification
Algorithm

"While the truth is rarely pure, it can be simple."

- Oscar Wilde via Robert C. Williamson, The Importance of Being Unhinged [121]

In the problem of binary classification, the goal is to learn a classifier that accu-
rately predicts an instance’s corresponding label. Many cutting edge classification
algorithms, such as the support vector machine, logistic regression, boosting (for a
particular choice of weak learners) and so on, output a classifier of the form,

f (x) = sign(
n

∑
i=1

αiyiK(x, xi)), (4.1)

with αi ≥ 0, ∑ αi = 1 and K(x, x′) a function that measures the similarity of two
instances x and x′. Algorithmically, optimizing these weights is a difficult problem
that still attracts much research effort. Furthermore, explaining these methods to the
uninitiated is a difficult task. Letting all the αi be equal in 4.1 leads to a conceptually
simpler classification rule, one that requires little effort to motivate or explain: the
mean,

f (x) = sign(
1
n

n

∑
i=i

yiK(xi, x)).

The above is a simple and intuitive classification rule. It classifies by the average
similarity to the previously observed positive and negative instances, with the most
similar class being the output of the classifier. It has been studied previously, for
example in chapter one of [107] and further in [12; 56; 80; 108]. The main drawbacks
of the mean classification rule are prohibitive storage and evaluation costs. In fact,
this is the motivation given for the support vector machine (SVM) in [107]. Our goal
here is to reinvigorate interest in this very average algorithm.

The chapter proceeds as follows:

• We argue for the mean classifier, showing it is the ERM solution for a classifi-
cation calibrated loss function [16] (theorems 4.1 and 4.2).
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• We explore the robustness properties of the mean classifier. We relate the noise
tolerance of the mean algorithm to the margin for error in the solution (theorem
4.6). Finally we show, in a certain sense, the mean classifier is the only surrogate
loss minimization method that is immune to the effects of symmetric label noise
(theorem 4.14).

• Finally, we show how to sparsely approximate any kernel classifier through the
use of kernel herding [8; 38; 128]. This produces a simple, understandable means
of choosing representative points, with provable rates of convergence.

The result is a conceptually simple algorithm for learning classifiers, that is accurate,
easily parallelized, robust and firmly grounded in theory.

4.1 Basic Notation

Denote by H an abstract Hilbert space, with inner product 〈v1, v2〉. For any v ∈ H,
denote by v̂ the unit vector in the direction of v. We work with loss functions ` :
{−1, 1} ×R→ R.

4.2 Kernel Classifiers

Let X be the instance space and Y = {−1, 1} the label space. A classifier is a bounded
function f ∈ RX, with f (x) the score assigned to the instance X and sign( f (x)) the
predicted label. For a distribution P ∈ P(X×Y), we define the Bayes optimal classifier
to be the classifier fP(x) = 1 if P(Y = 1|X = x) ≥ 1

2 and −1 otherwise. We measure
the distance between classifiers via the supremum distance,

‖ f − f ′‖∞ = sup
x∈X
| f (x)− f ′(x)|.

A classification algorithm is a function A : ∪∞
n=1(X × Y)n → RX, that given a training

set S outputs a classifier. Define the misclassification loss `01(y, v) = [[yv < 0]].
Note, that `01(y, 0) = 1 always. This non-standard form of misclassification loss will
enhance the readability of many of the proofs. An output of zero can be viewed as
abstaining from choosing a label. For any loss ` : Y ×R → R, we remind the reader
of the risk and sample risk of f defined as,

`(P, f ) := E(x,y)∼P`(y, f (x)) and `(S, f ) :=
1
|S| ∑

(x,y)∈S
`(y, f (x)),

respectively. Good classification algorithms should output classifiers with low mis-
classification risk. Many classification algorithms, such as the SVM, logistic regres-
sion, boosting (for a particular choice of weak learners) and so on, output a classifier
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of the form,

f (x) =
n

∑
i=1

αiyiK(x, xi),

with αi ≥ 0, ∑ αi = 1 and K(x, x′) = 〈φ(x), φ(x′)〉 a kernel function, an inner product
of feature vectors in a (possibly infinite dimensional) feature space. For simplicity,
we use the mean,

f (x) =
1
n

n

∑
i=i

yiK(xi, x). (4.2)

4.3 Why the Mean?

The mean is not only an intuitively appealing classification rule, it also arises as the
optimal classifier for the linear loss, considered previously in [105; 113]. Let,

`linear(y, v) = 1− yv.

If v ∈ {−1, 1}, then `01(y, v) = 1
2`linear(y, v). Allowing v ∈ [−1, 1] provides a convexi-

fication of misclassification loss. For v ∈ [−1, 1], `01(y, v) ≤ `linear(y, v) . Furthermore,
we have the following surrogate regret bound.

Theorem 4.1 (Surrogate Regret Bound for Linear Loss). For all distributions P,

fP = arg min
f∈[−1,1]X

`linear(P, f ) ∈ arg min
f∈[−1,1]X

`01(P, f ).

Furthermore for all f ∈ [−1, 1]X,

`01(P, f )− `01(P, fP) ≤ `linear(P, f )− `linear(P, fP).

By theorem 4.1, linear loss is a suitable surrogate loss for learning classifiers much
like the hinge, logistic and exponential loss functions [16]. As is usual, rather than
minimizing over all bounded functions, to avoid overfitting the sample we work with
a restricted function class. For a feature map φ : X → H, define the linear function
class,

Fφ := { fω(x) = 〈ω, φ(x)〉 : ω ∈ H} ,

and the bounded linear function class,

F r
φ := { fω(x) = 〈ω, φ(x)〉 : ω ∈ H, ‖ω‖ ≤ r} .

We will assume throughout that the feature map is bounded, ‖φ(x)‖ ≤ 1 for all
x. As shorthand we write `(P, ω) := `(P, fω). By the Cauchy-Schwarz inequality
F r

φ ⊆ [−r, r]X. As a surrogate to minimizing `01(P, f ) over all functions, we will
minimize `linear(S, f ) over f ∈ F 1

φ.
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For any sample S ∈ ∪∞
n=1(X × Y)n define the mean vector ωS = 1

|S| ∑
(x,y)∈S

yφ(x). The

mean classifier (4.2) can be written as f (x) = 〈ωS, φ(x)〉.

Theorem 4.2 (The Mean Classifier Minimizes Linear Loss).

ω̂S = arg min
ω:‖ω‖≤1

1
|S| ∑

(x,y)∈S
1− y〈ω, φ(x)〉 = arg min

ω:‖ω‖≤1
1− 〈ω, ωS〉

with minimum linear loss given by 1− ‖ωS‖. Furthermore classifying using 〈ω̂S, φ(x)〉 is
equivalent to classifying according to equation (4.2).

This has been noted in [113], we include it for completeness. The proof is a s-
traight forward application of the Cauchy-Schwarz inequality. As ω̂S = λωS, λ > 0,
they both produce the same classifier. Changing the norm constraint to ‖ω‖ ≤ r
merely scales the classifier, and therefore does not change its misclassification per-
formance. The quantity,

‖ωS‖2 =
1
|S|2 ∑

(x,y)∈S
∑

(x′,y′)∈S
yy′K(x, x′),

can be thought of as the "self-similarity" of the sample. For a distribution P, define
ωP = E(x,y)∼Pyφ(x). It is easily verified that,

ω̂P = arg min
ω:‖ω‖≤1

E(x,y)∼P1− y〈ω, φ(x)〉 = arg min
ω:‖ω‖≤1

1− 〈ω, ωP〉.

Furthermore, we have the following generalization bound on the linear loss perfor-
mance of ωS.

Theorem 4.3. For all distributions P and for all bounded feature maps φ : X → H, with
probability at least 1− δ on a draw S∼Pn,

`linear(P, ωS) ≤ `linear(S, ωS) +

√
2
(
1 + log( 1

δ )
)

n
.

This theorem is a special case of a more general result, proved in the appendix to
this chapter. In Smola et al. [112], bounds for the error in estimating the mean are
presented.

Theorem 4.4. For all distributions P and for all bounded feature maps φ : X → H, with
probability at least 1− δ on a draw S∼Pn,

‖ωP −ωS‖ ≤
2√
n
+

√
log( 2

δ )

2n
.

The proof is via an appeal to standard Rademacher bounds.
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4.3.1 Relation to Maximum Mean Discrepancy

Let P± ∈ P(X) be the conditional distribution over instances given a positive or
negative label respectively. Define the maximum mean discrepancy [66],

MMDφ(P+, P−) := max
ω:‖ω‖≤1

1
2
|Ex∼P+〈ω, φ(x)〉 −Ex∼P−〈ω, φ(x)〉| = 1

2
‖ωP+ −ωP−‖ .

MMDφ(P+, P−) can be seen as a restricted variational divergence 2.29,

V(P+, P−) = max
f∈[−1,1]X

1
2
|Ex∼P+ f (x)−Ex∼P− f (x)|,

a commonly used metric on probability distributions, where f ∈ F 1
φ ⊆ [−1, 1]X.

Define the distribution P ∈ P(X × Y) that first samples y uniformly from {−1, 1}
and then samples x∼Py. Then,

MMDφ(P+, P−) = max
ω:‖ω‖≤1

|E(x,y)∼P〈ω, yφ(x)〉| = ‖ωP‖ .

Therefore, if we assume that positive and negative classes are equally likely, the mean
classifier classifies using the ω that "witnesses" the MMD, i.e. it attains the max in
the above.

4.3.2 Relation to the SVM

For a regularization parameter λ, the SVM solves the following convex objective,

arg min
ω∈H

1
|S| ∑

(x,y)∈S
[1− y〈ω, φ(x)〉]+ +

λ

2
‖ω‖2 ,

where [x]+ = max(x, 0). This is the Lagrange multiplier problem associated with,

arg min
ω:‖ω‖2≤c

1
|S| ∑

(x,y)∈S
[1− y〈ω, φ(x)〉]+.

If we take c = 1, by Cauchy-Schwarz [1 − y〈ω, φ(x)〉]+ = 1 − y〈ω, φ(x)〉 and the
above objective is equivalent to that in theorem 4.2 . The mean classifier is the opti-
mal solution to a highly regularized SVM, and is therefore preferentially optimizing
the margin over the sample hinge loss. Prior evidence exists showing that feature
normalisation (which is high regularization in disguise) increases the generalisation
performance of SVM’s [65].

4.3.3 Relation to Kernel Density Estimation

On the surface the mean classifier is a discriminative approach. Restricting to positive
kernels, such as the Gaussian kernel, it can be seen as the following generative ap-
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proach: estimate P with P̃, with class conditional distributions estimated by kernel
density estimation. Letting S± = {(x,±1)} ⊆ S, take,

P̃(X = x|Y = ±1) ∝
1
|S±| ∑

x′∈S±

K(x, x′)

and P̃(Y = 1) = |S+|
|S| . To classify new instances, use the Bayes optimal classifier for P̃.

This yields the same classification rule as (4.2). This is the "potential function rule"
discussed in [56].

4.3.4 Extension to Multiple Kernels

To ensure the practical success of any kernel based method, it is important that the
correct feature map be chosen. Thus far we have only considered the problem of
learning with a single feature map, and not the problem of learning the feature map.
Given k feature maps φi : X → Hi, i ∈ [1; k], multiple kernel learning [9; 43; 76; 84]
considers learning over a function class that is the convex hull of the classes F 1

φi
,

F :=

{
f (x) =

k

∑
i=1

αi〈ωi, φi(x)〉 :
∥∥∥ωi

∥∥∥ ≤ 1, αi ≥ 0,
k

∑
i=1

αi = 1

}
.

By an easy calculation,

min
f∈F

1
|S| ∑

(x,y)∈S
1− y f (x) = min

i∈[1;k]
(1−

∥∥∥ωi
S

∥∥∥),
where ωi

S is the sample mean in the i-th feature space. In words, we pick the feature
space which minimizes 1−

∥∥ωi
S

∥∥. This is in contrast to usual multiple kernel learning
techniques that do not in general pick out a single feature map. Furthermore, we have
the following generalization bound.

Theorem 4.5. For all distributions P and for all finite collections of bounded feature maps
φi : X → Hi, i ∈ [1; k] , with probability at least 1− δ on a draw S∼Pn,

`linear(P, ω∗S) ≤ `linear(S, ω∗S) +

√
2
(
1 + log(k) + log

( 1
δ

))
n

,

where ω∗S corresponds to the mean that minimizes 1−
∥∥ωi

S

∥∥.

Like theorem 4.3, this is a specific case of a more refined bound presented in the
appendix to this chapter.
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4.4 The Robustness of the Mean Classifier

Here we detail the robustness of the mean classifier to perturbations of P. We do not
consider the statistical issues of learning from a corrupted distribution. For detailed
treatment of such problems the reader is directed to chapter 3 . We first show that
the degree to which one can approximate a classifier without loss of performance is
related to the margin for error of the classifier. We then discuss robustness properties
of the mean classifier under the σ-contamination model of Huber [75]. Finally we
show the immunity of the mean classifier to symmetric label noise.

The results of this section only pertain to linear function classes. In the following
section we consider general function classes. We show that in this more general set-
ting, linear loss is the only loss function that is robust to the effects of symmetric label
noise.

4.4.1 Approximation Error and Margins

Define the margin loss at margin γ to be `γ(y, v) = [[yv < γ]]. The margin loss is
an upper bound of misclassification loss. For γ = 0, `γ = `01. The margin loss is
used in place of misclassification loss to produce tighter generalization bounds for
minimizing misclassification loss [15; 109]. For a classifier f to have small margin
loss it must not just accurately predict the label, it must do so with confidence.
Maximizing the margin while forcing `γ(S, ω) = 0 is the original motivation for the
hard margin SVM [44]. Here we relate the margin loss of a classifier f to the amount
of slop allowed in approximating f .

Theorem 4.6 (Margins and Approximation). `ε(P, f ) ≤ α if and only if `01(P, f̃ ) ≤ α

for all f̃ with
∥∥ f − f̃

∥∥
∞ ≤ ε.

The margin for error on a distribution P of a classifier f is given by,

Γ(P, f ) := sup{γ : `γ(P, f ) = `01(P, f )}.

For a sample S, setting ε < Γ(S, f ) ensures,

`01(S, ωS) = `ε(S, ωS) = `01(S, ω̃S).

The margin therefore provides means of assessing the degree to which one can ap-
proximate a classifier; the larger the margin the greater error allowed in approximat-
ing the classifier.

4.4.2 Robustness under σ-contamination

Rather than samples from P, we assume the decision maker has access to samples
from a perturbed distribution,

P̃ = (1− σ)P + σQ,
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with Q the perturbation or corruption. We can view sampling from P̃ as sampling
from P with probability 1− σ and from Q with probability σ. It is easy to show that
ωP̃ = (1− σ)ωP + σωQ. Furthermore,

‖ωP −ωP̃‖ = σ ‖ωP −ωQ‖ .

Lemma 4.7. If σ ‖ωP −ωQ‖ < Γ(P, ωP) then `01(P, ωP) = `01(P, ωP̃).

Hence the margin provides means to assess the immunity of the mean classifier to
corruption. Furthermore, as ‖ωP −ωQ‖ ≤ 2, if σ < Γ(P,ωP)

2 then the mean classifier
is immune to the effects of any Q. We caution the reader that lemma 4.7 is a one
way implication. For particular choices of Q, one can show greater robustness of the
mean classifier.

4.4.3 Learning Under Symmetric Label Noise

Here we consider the problem of learning under symmetric label noise [4]. Rather
than samples from P, the decision maker has access to samples from a corrupted
distribution Pσ. To sample from Pσ, first draw (x, y)∼P and then flip the label with
probability σ. Learning from Pσ can be understood as a corrupted learning problem
of the sort studied in chapter 3. There the statistical effects of the corruption are
quantified, in summary n corrupted samples are equivalent to (1− 2σ)n uncorrupted
samples for the purpose of learning a classifier. Here we focus on robustness. This
problem is of practical interest, particularly in situations where there are multiple
labellers, each of which can be viewed as an "expert" labeller with added noises. We
can decompose,

Pσ = (1− σ)P + σP′,

where P′ is the "label flipped" version of P. It is easy to show ωP′ = −ωP. Therefore
ωPσ = (1− 2σ)ωP.

Theorem 4.8 (Symmetric Label Noise Immunity of the Mean Classifier). Let Pσ be P
corrupted via symmetric label noise with label flip probability σ. Then for all σ ∈ (0, 1

2 ),
`01(P, ωP) = `01(P, ωPσ).

The proof comes from the simple observation that as ωP and ωPσ are related by
a positive constant, they produce the same classifier. This result extends previous
results in [80; 108] on the symmetric label noise immunity of the mean classification
algorithm, were it is assumed the marginal distribution over instances is uniform on
the unit sphere in Rn.

4.4.4 Other Approaches to Learning with Symmetric Label Noise

A large class of modern classification algorithms, such as logistic regression, the SVM
and boosting, proceed by minimizing a convex potential or margin loss over a particular
function class.
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Definition 4.9. A loss ` is a convex potential if their exists a convex function ψ : R→ R

with ψ(v) ≥ 0, ψ′(0) < 0 and limv→∞ ψ(v) = 0, with,

`(y, v) = ψ(yv).

The condition that ψ′(0) < 0 ensures that all convex potential losses are clas-
sification calibrated [16] (in fact this condition characterizes classification calibrated
losses). Long and Servedio in [89] proved the following negative result on what is
possible when learning under symmetric label noise: there exists a separable distri-
bution P and function class F where, when the decision maker observes samples
from Pσ with symmetric label noise of any nonzero rate, minimisation of any convex
potential over F results in classification performance on P that is equivalent to ran-
dom guessing. The example provided in [89] is far from esoteric, in fact it is a given
by a distribution in R2 that is concentrated on three points with function class given
by linear hyperplanes through the origin. We present their example in section 4.9.

Ostensibly, this result establishes that convex losses are not robust to symmetric label
noise, and motivates using non-convex losses [55; 57; 94; 96; 114]. These approaches
are computationally intensive and scale poorly to large data sets. We have seen in the
previous that linear loss, with function class Fφ (for any feature map φ), is immune
to symmetric label noise. Furthermore, minimizing linear loss is easy. We show in
the following section that linear loss minimization over any function class is immune
to symmetric label noise.

An alternate means of circumventing the impossibility result in [89] is to use a rich
function class, say by using a universal kernel, together with a standard classification
calibrated loss. As the form of the Bayes optimal classifier is the same for both noisy
and clean data, one can appeal to universality results such as those in [91]. While
this approach is immune to label noise, performing the minimization is difficult. By
theorem 4.1, for sufficiently rich function classes, using any of these other losses will
produce the same result as using linear loss.

Finally, if the noise rate is known, one can use the method of unbiased estimators
presented by Natarajan et al. [101] and correct for the corruption. The obvious draw-
back is in general, the noise rate is unknown. In the following section we explore the
relationship between linear loss and the method of unbiased estimators. We show
that linear loss is "unaffected" by this correction (in a sense to be made precise).
Furthermore, linear loss is essentially the only convex loss with this property.

4.5 Symmetric Label Noise and Corruption Corrected Losses

The weakness of the analysis of section 4.4.3, was that it only considered linear func-
tion classes. Here we show that linear loss minimization over general function classes
is unaffected by symmetric label noise, in the sense that for all σ ∈ (0, 1

2 ) and for all
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function classes F ⊆ RX,

arg min
f∈F

E(x,y)∼P`linear(y, f (x)) = arg min
f∈F

E(x,y)∼Pσ
`linear(y, f (x)).

For the following section we work directly with distributions Q ∈ P(R × Y) over
score, label pairs. Any distribution P and classifier f induces a distribution Q(P, f )
with,

E(v,y)∼Q(P, f )`(y, v) = E(x,y)∼P`(y, f (x)).

A loss ` provides means to order distributions. For two distributions Q, Q′, we say
Q ≤` Q′ if,

E(v,y)∼Q`(y, v) ≤ E(v,y)∼Q′`(y, v).

If Q = Q(P, f1) and Q′ = Q(P, f2), the above is equivalent to,

E(x,y)∼P`(y, f1(x)) ≤ E(x,y)∼P`(y, f2(x)),

i.e., the classifier f1 has lower expected loss than f2. The decision maker wants
to find the distribution Q, in some restricted set, that is smallest in the ordering
≤`. Denote by Qσ, the distribution obtained from drawing pairs (v, y)∼Q and then
flipping the label with probability σ. In light of Long and Servedio’s example, there
is no guarantee that,

Q ≤` Q′ ⇔ Qσ ≤` Q′σ.

The noise might affect how distributions are ordered. To progress we seek loss func-
tions that are robust to label noise.

Definition 4.10. A loss ` is robust to label noise if for all σ ∈ (0, 1
2 ),

Q ≤` Q′ ⇔ Qσ ≤` Q′σ.

In words, the decision maker correctly orders distributions if they assume no
noise. Robustness to label noise easily implies,

arg min
f∈F

E(x,y)∼P`(y, f (x)) = arg min
f∈F

E(x,y)∼Pσ
`(y, f (x)),

for all F . Given any σ ∈ (0, 1
2 ), Natarajan et al. showed in [101] how to correct for

the corruption by associating with any loss, a corrected loss,

`σ(y, v) =
(1− σ)`(y, v)− σ`(−y, v)

1− 2σ
.

with the property,

E(v,y)∼Q`(y, v) = E(v,y)∼Qσ
`σ(y, v), ∀Q ∈ P(R×Y).

This is a specific instance of the corruption corrected losses considered in chapter 3.
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Robustness to label noise can be characterized by the order equivalence of ` and `σ.

Definition 4.11 (Order Equivalence). Two loss functions `1 and `2 are order equivalent
if for all distributions Q, Q′ ∈ P(R×Y),

Q ≤`1 Q′ ⇔ Q ≤`2 Q′.

Lemma 4.12. ` is robust to label noise if and only if for all σ ∈ (0, 1
2 ), ` and `σ are order

equivalent.

In words, the decision maker correctly orders distributions if they incorrectly
assume noise. Following on from these insights, we now characterize when a loss is
robust to label noise.

Theorem 4.13 (Characterization of Robustness). Let ` be a loss with `(−1, v) 6= `(1, v).
Then ` is robust to label noise if and only if there exists a constant C such that,

`(1, v) + `(−1, v) = C, ∀v ∈ R.

Ghosh et al. in [63] prove a one way result. Misclassification loss satisfies the
conditions for theorem 4.13, however it is difficult to minimize directly. For linear
loss,

`(1, v) + `(−1, v) = 1− v + 1 + v = 2.

Therefore linear loss is robust to label noise. Furthermore, up to equivalence, linear
loss is the only convex function that satisfies 4.13.

Theorem 4.14 (Uniqueness of Linear Loss). A loss ` is convex in its second argument
and is robust to label noise if and only if there exists a constant λ and a function g : Y → R

such that,
`(y, v) = λyv + g(y).

4.5.1 Beyond Symmetric Label Noise

Thus far we have assumed that the noise on positive and negative labels is the same.
A sensible generalization is label conditional noise, were the label y ∈ {−1, 1}, is
flipped with a label dependent probability. Following Natarajen et al. [101], we can
correct for class conditional label noise in the same way we can correct for symmetric
label noise, and use the loss,

`σ−1,σ1(y, v) =
(1− σ−y)`(y, v)− σy`(−y, v)

1− σ−1 − σ1
.

If the decision maker knows the ratio σ−1
σ1

, then for a certain class of loss functions
they can avoid estimating noise rates.

Theorem 4.15. Let ` be a loss with σ1`(−1, v) + σ−1`(1, v) = C for all v ∈ R. Then `σ−1,σ1

and ` are order equivalent.
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For linear loss,

σ1(1 + v) + σ−1(1− v) = σ1 + σ−1 + (σ1 − σ−1)v,

which is not constant in v unless σ1 = σ−1. Linear (and similarly misclassification
loss) are no longer robust under label conditional noise. This result also means there
is no non trivial convex loss that is robust to label conditional noise for all noise rates
σ−1 + σ1 < 1, as linear loss would be a candidate for such a loss.

Progress can be made if one works with more general error measures, beyond ex-
pected loss. For a distribution P ∈ P(X × Y), let P± ∈ P(X) be the conditional
distribution over instances given a positive or negative label respectively. The bal-
anced error function is defined as,

BER`(P+, P−, f ) =
1
2

Ex∼P+`(1, f (x)) +
1
2

Ex∼P−`(−1, f (x)).

If both labels are equally likely under P, then the balanced error is exactly the expect-
ed loss. The balanced error "balances" the two class, treating errors on positive and
negative labels equally. Closely related to the problem of learning under label condi-
tional noise, is the problem of learning under mutually contaminated distributions,
presented in Menon et al. [100]. Rather than samples from the clean label conditional
distributions, the decision maker has access to samples from corrupted distributions
P̃±, with,

P̃+ = (1− α)P+ + αP− and P̃− = βP+ + (1− β)P−, α + β < 1.

In words, the corrupted P̃y is a combination of the true Py and the unwanted P−y. We
warn the reader that α and β are not the noise rates on the two classes. However, in
section 2.3 of Menon et al. [100], they are shown to be related to σ±1 by an invertible
transformation.

Theorem 4.16. Let ` be robust to label noise. Then,

BER`(P̃+, P̃−, f ) = (1− α− β)BER`(P+, P−, f ) +
(α + β)

2
C,

for some constant C.

This is a generalization of proposition 1 of Menon et al. [100], that restricts to
misclassification loss. Taking argmins yields,

arg min
f∈F

BER`(P̃+, P̃−, f ) = arg min
f∈F

BER`(P+, P−, f ).

Thus balanced error can be optimized from corrupted distributions.

Going further beyond symmetric label noise, one can assume a general noise pro-
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cess with noise rates that depend both on the label and the observed instance. Define
the noise function σ : X × Y → [0, 1

2 ), with σ(x, y) the probability that the instance
label pair (x, y) has its label flipped. Rather than samples from P, the decision maker
has samples from Pσ, where to sample from Pσ first sample (x, y)∼P and then flip
the label with probability σ(x, y). The recent work of Gosh et al. [63] proves the
following theorem concerning the robustness properties of minimizing any loss that
is robust to label noise.

Theorem 4.17. For all distributions P, function classes F , all noise functions σ : X×Y →
[0, 1

2 ) and all loss functions ` that are robust to label noise,

`(P, f ∗σ ) ≤
`(P, f ∗)

min(x,y) 1− 2σ(x, y)
,

where f ∗σ and f ∗ are the minimizers over F of `(Pσ, f ) and `(P, f ) respectively.

Our proof of this theorem is a slight modification of the discussion that follows
remark 1 in Ghosh et al. [63]. There they only consider variable noise rates that are
functions of the instance. We include it for completeness. In particular, this theorem
shows that if `(P, f ∗) = 0 and max(x,y) σ(x, y) < 1

2 , then minimizing ` with samples
from Pσ will also recover a classifier with zero loss against the clean P.

4.6 Herding for Sparse Approximation

Data: Distribution P ∈ P(Z), set of possible representative points S ⊆ Z,
kernel function K and error tolerance ε.

Result: Weighted set of representives H = {(αi, zi)}n
i=1 such that∥∥∥∥∥ωP − ∑

(α,z)∈H
αψ(z)

∥∥∥∥∥ ≤ ε.

Initialization: z∗ = arg maxz′∈S Ez∼PK(z, z′), H = {(1, z∗)} ;

while

∥∥∥∥∥ωP − ∑
(α,z)∈H

αψ(z)

∥∥∥∥∥ > ε do

Let z∗ = arg maxz′∈S Ez∼PK(z, z′)− ∑
(α,z)∈H

αK(z, z′) ;

Set λ∗ = arg minλ∈[0,1]

∥∥∥∥∥ωP −
(
(1− λ) ∑

(α,z)∈H
αψ(z) + λψ(z)

)∥∥∥∥∥;

Multiply all weights in H by 1− λ∗ ;
Add (λ∗, z∗) to H

end
Algorithm 1: Pseudo-code specification of Herding.

The main problem classifying according to 4.2 is the dependence of the classifier
on the entire sample. We show how to correct this. We first survey the technique of
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herding, before showing how it can be applied in estimating the classifier of 4.2.

For any set Z, mapping ψ : Z → H and distribution P ∈ P(Z), define the mean
ωP = Ez∼Pψ(z). We recover our previous definition by taking Z = X × Y and
ψ(x, y) = yφ(x). Given a set of examples S = {ψ(zi)}n

i=1, herding [8; 38; 128] is a
method to sparsely approximate ωP with a combination of the elements of S. In [8] it
was shown that herding is an application of the Frank-Wolfe optimization algorithm
to the convex problem,

min
ω̃∈C
‖ωP − ω̃‖2 ,

where, C = co({ψ(z) : z ∈ S}). Define the kernel K(z, z′) = 〈ψ(z), ψ(z′)〉. Herding
proceeds as in algorithm 1. Intuitively, herding begins by selecting the point in S that
is most similar on average to draws from P, as measured by K. When selecting a
new representative, herding chooses the point in S that is most similar on average to
draws from P while being different from previously chosen points. If herding runs for m
iterations, then an approximation of ωP with only m elements is obtained. One can
also take λ∗ = 1

|R|+1 , leading to uniform weights.

Herding can also be viewed as minimizing MMDψ(P, Q), where the approximating
distribution Q is concentrated on S [38]. Originally, herding was motivated as means
to produce "super samples" from a distribution P. Standard monte-carlo techniques
lead to convergence at rate 1√

m of the square error ‖ωP − ω̂‖ → 0. Using herding,
under certain conditions faster rates can be achieved. For our application, P is the
empirical distribution over the set S, 1

|S| ∑z∈S δz , or equivalently ωS = 1
|S| ∑z∈S ψ(z).

As we will see, herding converges rapidly: O(log( 1
ε )) iterations gives an approxima-

tion of accuracy ε.

The expression for the optimal λ∗ is available in closed form, see section 4 of Bach
et al. [8]. More exotic forms of the Frank Wolfe algorithm exist, see [77] for a fan-
tastic review. In fully corrective methods, the line search over λ is replaced with a
full optimization over all current points in the herd. The minimum norm point al-
gorithm replaces the minimization over the convex hull of the current representative
points with a minimization over the affine hull together with a line search step. Away
step methods consider both adding a new member to the herd as well as deleting a
current member. These more involved methods can be used in place of algorithm 1.

4.6.1 Rates of Convergence for Herding

Let ω̃m be the approximation to ωP obtained from running herding for m iterations.
As discussed previously, herding can be used as a means of sampling from a distribu-
tion, with rates of convergence ‖ωP − ω̃‖ → 0 faster than that for random sampling.
While in the worst case, one can not do better than a 1√

m rate, if ωP ∈ C faster rates
can be obtained [8]. Let D be the diameter of C and d the distance from ωP to the
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boundary of C. For herding with line search as in algorithm 1,

‖ωP − ω̃m‖ ≤ ‖ωP − ω̃1‖ e−αm,

where α = d
2(‖ωP‖+D)

[19]. For our application ωP = ωS = 1
S ∑z∈S ψ(z) which is

clearly in C. If d > 0 the herded approximation converges quickly to ωS.

Recent work [83] has shown that some of the more exotic varieties of the Frank-
Wolfe algorithm exhibit fast convergences even when d = 0. They show for the fully
corrective, minimum norm point and away step alternatives,

‖ωP − ω̃m‖ ≤
(

1− 1
4

(
δ

D

)2
)m

‖ωP − ω̃1‖ ,

where δ is the pyramidal width of the convex hull of the samples feature vectors. While
their analysis does overcome issues concerning distance to the boundary, it is based
on a worst case analysis of steps of the Frank-Wolfe algorithm, leading to unexpected
sets having the best constant (the largest ratio δ

D is given by the unit simplex which
is very unlike most samples seen in practice). Furthermore the constant δ can be
difficulty to calculate. More work is required to better understand the convergence
properties of the herding algorithm.

4.6.2 Computational Analysis of Herding

The main bottleneck of the herding algorithm is the population of the kernel matrix,
which runs in time of order n2. Like most greedy algorithms, to calculate each it-
eration of the herding algorithm, only knowledge of the previously added point is
required. Therefore, each iteration runs in order n. One can avoid calculating the
entire kernel matrix by estimating Ez∼PK(z, z′). This reduces the initialization time
to order n, at the cost of extra time per iteration required to calculate the kernel be-
tween the newly added point and all the elements of the sample.

There exists many tricks to speed up the training of SVM’s [118]. In section 4.6.6
we show how these methods can be applied to herding.

4.6.3 Parallel Extension

It is very easy to parallelize the herding algorithm. Rewriting the mean as a "mean
of means", one has,

1
n

n

∑
i=1

ψ(zi) =
m

∑
i=1

ni

n

(
1
ni

ni

∑
j=1

ψ(zij)

)
,

where we have split the n data points into m disjoint groups with zij the j-th element
of the i-th group. We can use herding to approximate each sub mean 1

ni
∑ni

j=1 ψ(zij)

separately. Furthermore, if we approximate each sub mean to tolerance ε, combining
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the approximations yields an approximation to the total mean with tolerance ε.

Lemma 4.18 (Parallel Means). Let ω = ∑ λiωi with λi ≥ 0 and ∑ λi = 1. Suppose that
for each i there is an approximation ω̃i with ‖ωi − ω̃i‖ ≤ ε. Then ‖ω−∑ λiω̃i‖ ≤ ε.

The proof is a simple application of the triangle inequality and the homogeneity
of norms. Lemma 4.18 allows one to use a map-reduce algorithm to herd large sets
of data. One splits the data into M groups, herds each group in parallel and then
combines the groups, possibly herding the result.

4.6.4 Discriminative Herding for Approximating Rule 4.2

Our goal is to approximate equation (4.2), which in turn means approximating ωS. To
this end, we run herding on the sample S. Let ψ : X × Y → H, with ψ(x, y) = yφ(x)
and corresponding kernel K((x, y), (x′, y′)) = yy′K(x, x′). We take,

ω̃S = ∑
(α,(x,y))∈H

αyφ(x),

where H is the representative set (or herd) of instance, label pairs obtained from
herding S to tolerance ε. Our approximate classifier is f̃ (x) = 〈ω̃S, φ(x)〉. We have
by a simple application of the Cauchy-Schwarz inequality,∥∥ f − f̃

∥∥
∞ = sup

x
|〈ωS − ω̃S, φ(x)〉| ≤ ε.

Hence the tolerance used in the herding algorithm directly controls the approxima-
tion accuracy.

4.6.5 Comparisons with Previous Work

Herding has appeared under a different name in the field of statistics, in the work of
Jones [78]. There an algorithm closely related to the Frank-Wolfe algorithm (projec-
tion pursuit) is considered, and rates of convergence of 1√

m for the general case when
ωP /∈ C are proved. The appendix of [73] features a theoretical discussion of sparse
approximations. Herbrich and Williamson in [73] show the existence of a m-sparse

approximation with ‖ω− ω̃‖ ≤
√

2ε m
2
(S)

√
m , with ε m

2
(S) the entropy numbers of the set S.

We further explore the connections to their approach in the appendix to this chapter.

4.6.6 Comparing Herding to Sparse SVM Solvers

Recall that the SVM solves the following convex objective,

arg min
ω∈H

1
|S| ∑

(x,y)∈S
[1− y〈ω, φ(x)〉]+ +

λ

2
‖ω‖2 . (4.3)
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There are many approximate, "greedy", methods to attack this problem. These meth-
ods are deeply related to Frank Wolfe algorithms [3; 40; 118]. Here we show the
connection of these methods to kernel herding. It is well known that the optimal
solution to the SVM objective 4.3 is of the form,

ω =
n

∑
i=1

αiyiφ(xi), αi ≥ 0 ∀i ∈ [1; n].

Let C = co({yφ(x) : (x, y) ∈ S}). If we normalize the αi, i.e. take ∑n
i=1 αi = 1 (which

does not change the outputted classifier), then ω ∈ C. For all ω ∈ C, ‖ω‖ ≤ 1.
Therefore, via an application of the Cauchy Schwarz inequality, the SVM objective
4.3 is equivalent to,

arg min
ω∈C

1− 〈ω, ωS〉+
λ

2
‖ω‖2 .

Setting λ = 1 gives optimal solution ω∗ = ωS. Furthermore, for λ = 1,

−〈ω, ωS〉+
1
2
‖ω‖2︸ ︷︷ ︸

SVM objective

=
1
2
‖ω−ωS‖2 − 1

2
‖ωS‖2︸ ︷︷ ︸

Independent of ω

.

Therefore the SVM objective 4.3 reduces to the herding objective,

arg min
ω∈C

‖ω−ωS‖2 .

Herding can thus be understood as the application of "greedy" algorithms presented
in [3; 40; 118] to a sufficiently regularized SVM objective.

4.6.7 Sparsity Inducing Objectives versus Sparsity Inducing Algorithms

Much of practical machine learning can be understood as solving regularized empir-
ical loss problems,

arg min
ω∈H

1
|S| ∑

(x,y)∈S
`(y, 〈ω, φ(x)) + Ω(ω),

with ` a loss and Ω a regularizer. It is desirable for the evaluation speed of the out-
putted classifier that ω be as sparse as possible. For example, the linear loss objective
does not return a sparse solution. There are two main approaches to this problem.

One can understand objectives that promote sparsity, via sparsity inducing losses
or sparsity inducing regularizers. For example in the LASSO, the L1 regularizer
Ω(ω) = λ ∑n

i=1 |ωi| is used [115]. Alternately, Bartlett and Tewari in [18] use the
standard square norm regularizer, Ω(ω) = λ

2 ‖ω‖
2, and vary the loss. They show

there is an inherit trade off between sparse solutions, and solutions that give cali-
brated probability estimates. We point out that this is for this particular choice of
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regularizer. In the objective based approach, properties of the actual minimizer are
deduced from the KKT conditions of the relevant optimization objective.

In practice, one rarely if ever returns the exact minimizer. Therefore, the search of
objectives that have sparse minimizers does not tell the full story. The approach taken
here, and in [3; 40; 118], is to use an optimization algorithm that provides sparsity
for free.

In the context of learning with symmetric label noise, this further highlights the
importance of strong robustness. What is important is how the objective orders solu-
tions, and not necessarily what the exact minimizer of the objective is.

4.7 Conclusion

We have taken a simple classifier, given by the sample mean, and have placed it
on a firm theoretical grounding. We have shown its relation to maximum mean
discrepancy, highly regularized support vector machines and finally to kernel density
estimation. We have proven a surrogate regret bound highlighting its usefulness in
learning classifiers, as well as generalization bounds for single and multiple feature
maps. We have analysed the robustness properties of the mean classifier, and have
shown that linear loss is the only convex loss function that is robust to symmetric label
noise. Finally, we have shown how herding can be used to speed up its evaluation.
The result is a conceptually clear, theoretically justified means of learning classifiers.



Appendix to Chapter 4

4.8 Proof of Concept Experiment

Here we include a proof of concept experiment, highlighting the performance of
herding as a means of compressing data sets. Keeping up with the current fashion,
we consider classifying 3’s versus 8’s from the MNIST data set, comprising 11982
training examples and 1984 test examples. We normalize all pixel values to lie in
the interval [0, 1] and use a Gaussian kernel with bandwidth 1. We plot the test set
performance of the learned classifier as a function of the percentage of the training
set used in the herd. To produce the dashed curve, we recursively herd with an
allowed error of 0.01 (i.e. we herd the data set, and then the herd and so on). To
produce the dotted curve, we recursively use parallel herding with an allowed error
of 0.025 and a maximum number of 200 data points in each sub division. Each large
dot signifies a herd. For both curves, we recurse until there are only 100 data points
in the herd. As a baseline (in red), we plot the performance of the mean of the entire
training set.
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Fig. 4.1: Experiment on the MNIST data set highlighting herding’s ability to compress data
sets. Curves are produced by recursively running the herding algorithm (herding the data

and then the herd and so on), see text (best viewed in colour).
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The baseline method achieves test set performance of 98.74%. Firstly, the curves
for parallel and non-parallel herding are qualitatively the same. We comment on the
non-parallel herding. We see that with little as 1% of the training set, an accuracy
of over 94% is obtained. The performance of the herded samples rapidly approaches
that of the full mean. Less than 20% of the training set affords an accuracy of over
97%.

4.9 Long and Servedio Example

Fig. 4.2: Long and Servedio’s example highlighting the non-robustness to label noise of hinge
loss minimization. See text.

Figure 4.2 details Long and Servedio’s example highlighting the non-robustness
to label noise of hinge loss minimization. The distribution P is concentrated on
the blue points, with each point deterministically labelled positive. The southern
most point is chosen with probability 1

2 , and the other two points are chosen with
probability 1

4 . The function class considered is hyper planes through the origin.
Solving for,

arg min
ω∈R2

E(x,y)∼P[1− 〈ω, x〉]+,

yields the solid black hyperplane, which correctly classifies all points. Solving for,

arg min
ω∈R2

E(x,y)∼Pσ
[1− 〈ω, x〉]+,

for sufficiently large σ, yields the dashed black hyperplane, which incorrectly classi-
fies the southern most point. As this point is chosen with probability 1

2 , this classifier
performs as well as random guessing. The scale of the data set can be chosen so that
this occurs for σ arbitrarily small. In contrast the mean solution provides the red
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hyperplane, which correctly classifies all data points.

4.10 Proof of Theorem 4.1

Proof. It is well known that fP ∈ arg min f∈[−1,1]X `01(P, f ). From P define PX to be
the marginal distribution over instances and η(x) = P(Y = 1|X = x). Then,

`linear(P, f ) = E(x,y)∼P1− y f (x)

= Ex∼PX 1 + (1− 2η(x)) f (x).

Minimizing over f ∈ [−1, 1]X gives f (x) = −1 if 1− 2η(x) ≥ 0 i.e. when η(x) < 1
2

and f (x) = 1 otherwise. This proves the first claim. We have,

`linear(P, fP) = Ex∼PX 1− |(1− 2η(x))| .

Therefore,

`linear(P, f )− `linear(P, fP) = Ex∼PX (1− 2η(x)) f (x) + |(1− 2η(x))|
= Ex∼PX |(1− 2η(x))| − sign(2η(x)− 1) |(1− 2η(x))| f (x)

= Ex∼PX |(1− 2η(x))| (1− sign(2η(x)− 1) f (x)).

It is well known that,

`01(P, f )− `01(P, fP) = Ex∼PX |(1− 2η(x))| [[sign(2η(x)− 1) f (x) ≤ 0]].

We complete the proof by noting [[v ≤ 0]] ≤ 1− v for v ∈ [−1, 1].

4.11 PAC-Bayesian Bounds for Linear Loss

Here we develop general bounds for learning with linear loss. Theorems 4.3 and 4.5
are recovered as special cases. For the following, ` will denote linear loss.

Let F ⊆ RX. Denote the expected linear loss of f ∈ F by `(P, f ). We consider
randomized algorithms A : ∪∞

n=1(X × Y)n → P(F ). For any algorithm A, define the
mean function Ā : ∪∞

n=1(X×Y)n → RX,

Ā(S)(x) = E f∼A(S) f (x).

For a distribution over functions Q ∈ P(F ), define the doubly annealed loss,

`ββ(P, Q) = − 1
β

log(E(x,y)∼PE f∼Qe−β(1−y f (x))).
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Theorem 4.19 (PAC-Bayes Linear Loss theorem). For all distributions P, φ : X → H,
priors π, randomized algorithms A and β > 0,

ES∼Pn`ββ(P,A(S)) ≤ ES∼Pn

[
`(S, Ā(S)) + DKL(A(S), π)

βn

]
.

Furthermore, with probability at least 1− δ on a draw from S∼Pn with A, π and β fixed
before the draw,

`ββ(P,A(S)) ≤ `(S, Ā(S)) +
DKL(A(S), π) + log( 1

δ )

βn
.

Proof. This is theorem A.6 of the appendix for linear loss, coupled with the convexity
of − log.

We call π the prior and A(S) the posterior. The decision maker is lucky (has
a tighter bound), if DKL(A(S), π) is small. For linear function classes we identify
fω ∈ Fφ with its weight vector ω. We take A(S) ∈ P(H) and with a slight abuse of
notation define Ā(S) = Eω∼A(S)ω. We have,

Ā(S)(x) = Eω∼A(S)〈ω, φ(x)〉 = 〈Ā(S), φ(x)〉 ∈ Fφ.

The sample risk of the posterior distribution is determined by its mean. To exploit
this, we focus on posteriors and priors of simple form, allowing exact calculation
of the annealed loss and the KL divergence term. We assume π = N (ωπ, 1) and
A(S) = N (Ā(S), 1). In words, priors and posteriors are normal distributions with
identity covariance. This restriction and the following theorem lead to theorem 4.2.

Theorem 4.20. For all distributions P, feature maps φ, prior vectors ωπ ∈ H, sample
dependent weight vectors Ā : (X × Y)n → H and β > 0 such that ‖φ(x)‖ ≤ 1 ∀x and
‖Ā(S)‖ ≤ 1 ∀S,

ES∼Pn`(P, Ā(S)) ≤ ES∼Pn

[
`(S, Ā(S)) + ‖Ā(S)−ωπ‖2

βn

]
+ β.

Furthermore, with probability at least 1− δ on a draw from S∼Pn with Ā, ωπ and β fixed
before the draw,

`(P, Ā(S)) ≤ `(S, Ā(S)) +
‖Ā(S)−ωπ‖2 + log( 1

δ )

βn
+ β.

Proof. We begin with theorem 4.19 and the function class Fφ. For priors and posteri-
ors given by normal distributions,

DKL(A(S), π) = ‖Ā(S)−ωπ‖2.
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For the left hand side of the bound,

− 1
β

log(E(x,y)∼PEω∼A(S)e
−β(1−〈ω,yφ(x)〉))

=− 1
β

log(E(x,y)∼PEω∼N (Ā(S),1)e
−β(1−〈ω,yφ(x)〉))

=− 1
β

log(E(x,y)∼Pe−β(1−〈Ā(S),yφ(x)〉)+ β2
2 ‖φ(x)‖2

),

where the final line follows from standard results on the moment generating function
of normal distributions. We can lower bound this quantity as follows,

− 1
β

log(E(x,y)∼Pe−β(1−〈Ā(S),yφ(x)〉)+ β2
2 ‖φ(x)‖2

)

≥− 1
β

log(E(x,y)∼Pe−β(1−〈Ā(S),yφ(x)〉))− β

2

≥E(x,y)∼P1− 〈Ā(S), yφ(x)〉 − β

=1− 〈Ā(S), ωP〉 − β,

where the first line follows as − log is a decreasing function and ‖φ(x)‖ ≤ 1, and
the second follows from lemma A.8 of the appendix, which can be applied as by
Cauchy-Schwarz,

|1− 〈Ā(S), yφ(x)〉| ∈ [0, 2].

By theorem 4.19 we have,

ES∼Pn 1− 〈Ā(S), ωP〉 − β ≤ ES∼Pn

[
1− 〈Ā(S), ωS〉+

‖Ā(S)−ωπ‖2

βn

]
,

with a corresponding high probability version.

To recover theorem 4.3, consider the algorithm,

A(S) = N (ωS,1),

with prior ωπ = 0. Upper bounding ‖Ā(S)−ωπ‖2 ≤ 1 yields,

`(P, ωS) ≤ `(S, ωS) +
1 + log

( 1
δ

)
βn

+ β.

Finally, optimize over β.
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PAC-Bayesian Bounds for Learning over Multiple Feature Maps

It is common for the decision maker to have access to several feature maps φi : X →
Hi, for i in a (possibly infinite) index set I . Define,

FI = ∪i∈IFφi ,

the disjoint union of the function classes Fφi . Rather than priors and posteriors on a
single Fφi , we consider distributions on FI that are mixtures of normals,

A(S) = i∼α(S), ωi∼N (Āi(S),1)

π = i∼απ, ωi∼N (ωi
π,1),

where πi
ω, Āi(S) ∈ Hi and απ, α(S) ∈ P(I). These distributions first pick a tag i and

then generate a weight vector ωi ∈ Hi.

Theorem 4.21. For all distributions P, collections of feature maps φi, prior weights απ ∈
P(I), prior vectors ωi

π ∈ Hi, sample dependent weights α(S) ∈ P(I), sample dependent
weight vectors Āi(S) ∈ Hi and β > 0 such that ‖φ(x)‖ ≤ 1 ∀x and ‖Āi(S)‖ ≤ 1 ∀S,

ES∼Pn Ei∼α(S)`(P, Āi(S))

≤ ES∼Pn

[
Ei∼α(S)`(S, Āi(S)) +

DKL(α(S), απ) + Ei∼α(S)‖Āi(S)−ωπ‖2

βn

]
+ β.

Furthermore, with probability at least 1− δ on a draw from S∼Pn with Āi, ωi
π and β fixed

before the draw,

Ei∼α(S)`(P, Āi(S))

≤ Ei∼α(S)`(S, Āi(S)) +
DKL(α(S), απ) + Ei∼α(S)‖Āi(S)−ωπ‖2

βn
+ β.

Proof. The proof proceeds in very similar fashion to that of the previous theorem. We
begin with theorem 4.19 and the function class FI . By simple properties of the KL
divergence [46], for priors and posteriors given by mixtures of normal distributions,

DKL(A(S), π) = DKL(α(S), απ) + Ei∼α(S)‖Āi(S)−ωπ‖2.

For the left hand side of the bound,

− 1
β

log(E(x,y)∼PEω∼A(S)e
−β(1−〈ω,yφ(x)〉))

=− 1
β

log(E(x,y)∼PEi∼α(S)Eω∼N (Āi(S),1)e
−β(1−〈ωi ,yφi(x)〉))

=− 1
β

log(E(x,y)∼PEi∼α(S)e
−β(1−〈Āi(S),yφi(x)〉)+ β2

2 ‖φi(x)‖2
),
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where the final line follows from standard results on the moment generating function
of normal distributions. We can lower bound this quantity as follows,

− 1
β

log(E(x,y)∼PEi∼α(S)e
−β(1−〈Āi(S),yφi(x)〉)+ β2

2 ‖φi(x)‖2
)

≥− 1
β

log(E(x,y)∼PEi∼α(S)e
−β(1−〈Āi(S),yφi(x)〉))− β

2

≥E(x,y)∼PEi∼α(S)1− 〈Āi(S), yφ(x)〉 − β

=Ei∼α(S)1− 〈Ā(S), ωP〉 − β,

where the first line follows as − log is a decreasing function and ‖φ(x)‖ ≤ 1, and
the second follows from lemma A.8 of the appendix, which can be applied as by
Cauchy-Schwarz,

|1− 〈Ā(S), yφ(x)〉| ∈ [0, 2].

By theorem 4.19 we have,

ES∼Pn Ei∼α(S)1− 〈Āi(S), ωP〉 − β

≤ ES∼Pn

[
Ei∼α(S)1− 〈Āi(S), ωS〉+

DKL(α(S), απ) + Ei∼α(S)‖Āi(S)−ωπ‖2

βn

]
,

with a corresponding high probability version.

To recover theorem 4.5, consider the algorithm with,

Ai(S) = N (ωi
S,1),

and α(S) placing all mass on the feature map with minimum 1−
∥∥ωi

S

∥∥. Using prior,
ωi

π = 0 and απ the uniform distribution of [1; k] and upper bounding,

‖Āi(S)−ωi
π‖2 ≤ 1 and DKL(α(S), απ) ≤ log(k),

yields,

`(P, ω∗S) ≤ `(S, ω∗S) +
1 + log(k) + log

( 1
δ

)
βn

+ β.

Finally, optimise over β.

4.12 Proof of Theorem 4.6

Before the proof we prove the following simple lemma.

Lemma. Let v, ṽ ∈ R with |v− ṽ| ≤ ε. Then ṽ < 0 implies v < ε.
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Proof. We have v− ε ≤ ṽ ≤ v + ε. If ṽ < 0, then v− ε < 0.

We now prove the theorem.

Proof. First we prove the forward implication. By the conditions of the theorem,
| f (x)− f̃ (x)| ≤ ε for all x ∈ X, meaning |y f (x)− y f̃ (x)| ≤ ε for all pairs (x, y). By
the previous lemma, y f̃ (x) < 0 implies y f (x) < ε. This means,

[[y f̃ (x) < 0]] ≤ [[y f (x) < ε]].

Averaging over P yields the desired result. For the reverse implication, define the
function,

f̃ (x) =

{
0 : | f (x)| ≤ ε

f (x) : | f (x)| > ε

By simple calculation
∥∥ f − f̃

∥∥
∞ ≤ ε and `01(P, f̃ ) = `ε(P, f ). By assumption,

`01(P, f̃ ) ≤ α. Therefore `ε(P, f ) ≤ α.

4.13 Comparison with Makovoz’s Theorem

We call ω ∈ co(S) m-sparse if it is a combination of only m elements of S. Makovoz’s
theorem [93] is an existential result concerning the degree to which one can ap-
proximate any ω ∈ co(S), with an m-sparse approximation ω̃m. Let {B(zi, ε)}n

i=1 be a
collection of n balls in H. We say such a collection of balls covers S if S ⊆ ∪n

i=1B(zi, ε).
We call ε the radius of the cover. Define the nth entropy number of S as,

εm(S) := inf{ε : ∃ a cover of S with radius ε and n ≤ m}.

The entropy number of S is a fine grained means to assess its complexity. Intuitively,
the simpler S is the faster εn(S) decays as n → ∞. The following is theorem 27 in
[73].

Theorem 4.22. Let H be a Hilbert space of dimension d. Then for all finite S ⊆ H, for all
ω ∈ co(S), and for all even m ≤ |S| there exists an m-sparse ω̃ ∈ co(S) such that,

‖ω− ω̃‖ ≤
√

2ε m
2
(S)

√
m

.

Theorem 4.22 has an advantage over the analysis in section 4.6.1. It includes more
information about the sample than just the diameter of S and the distance from the
sample mean to the boundary of S in the form of the entropy numbers of S. It is
known for S the d-dimensional unit ball, m−

1
d ≤ εm(S) ≤ 4m−

1
d (see equation 1.1.10
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of [33]). Naively, this means theorem 4.22 gives rates of convergence,

‖ω− ω̃‖ ≤ 4
√

2

m
1
2+

1
d

,

where d can be replaced by |S| for infinite dimensional problems. This suggests
that herding outperforms the bound in theorem 4.22. Ideally one wants a version
of equation 2 that has direct reference to the entropy numbers of S. This will be the
subject of future work.

4.14 Proof of Lemma 4.12 and Theorem 4.13

Before the proofs we require the following lemma.

Lemma 4.23. Let `1 and `2 be loss functions. `1 and `2 are order equivalent if and only if
there exists constants α > 0 and β such that,

`2(y, v) = α`1(y, v) + β.

This is theorem 2 of section 7.9 in [54]. We now prove lemma 4.12.

Proof. We begin with the reverse implication. Since,

E(v,y)∼Q`(y, v) = E(v,y)∼Qσ
`σ(y, v), ∀Q, Q′,

we have Q ≤` Q′ ⇔ Qσ ≤`σ
Q′σ. As we assume ` and `σ are order equivalent,

Qσ ≤`σ
Q′σ ⇔ Qσ ≤` Q′σ. Therefore,

Q ≤` Q′ ⇔ Qσ ≤` Q′σ.

For the forward implication, define the loss `′ with,(
`′(−1, v)

`′(1, v)

)
=

(
1− σ σ

σ 1− σ

)(
`(−1, v)

`(1, v)

)
, ∀v ∈ R.

It is easily verified that `′σ = `. This means,

E(v,y)∼Q`
′(y, v) = E(v,y)∼Qσ

`(y, v), ∀Q, Q′,

but as Q ≤` Q′ ⇔ Qσ ≤` Q′σ, we have,

Q ≤` Q′ ⇔ Q ≤`′ Q′.

Therefore ` and `′ are order equivalent. Invoking lemma 4.23 and the definition of `′
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yields,(
1− σ σ

σ 1− σ

)(
`(−1, v)

`(1, v)

)
= α

(
`(−1, v)

`(1, v)

)
+ β

(
1

1

)
, ∀v ∈ R,

for α > 0. This yields,(
`(−1, v)

`(1, v)

)
= α

(
1

1− 2σ

(
1− σ −σ

−σ 1− σ

)(
`(−1, v)

`(1, v)

))
︸ ︷︷ ︸

`σ

+β

(
1

1

)
, ∀v ∈ R.

Therefore ` is order equivalent to `σ.

We now prove theorem 4.13.

Proof. As ` and `σ are order equivalent, by the lemma 4.23, `σ(y, v) = α`(y, v) + β.
Combined with the definition of `σ yields,

(1− σ)`(y, v)− σ`(−y, v)
1− 2σ

= α`(y, v) + β.

Setting y = ±1 yields the following two equations,

(1− σ)`(1, v)− σ`(−1, v) = (1− 2σ)(α`(1, v) + β) (4.4)

(1− σ)`(−1, v)− σ`(1, v) = (1− 2σ)(α`(−1, v) + β). (4.5)

Adding these two equations together and dividing through by 1− 2σ yields,

`(1, v) + `(−1, v) = α(`(1, v) + `(−1, v)) + 2β. (4.6)

If α 6= 1, `(1, v) + `(−1, v) = 2β
1−α = C and the proof is complete. If α = 1, β = 0 by

4.6. Inserting these values into 4.4 yields,

(1− σ)`(1, v)− σ`(−1, v) = (1− 2σ)`(1, v).

Thus `(1, v) = `(−1, v), an excluded pathological case. For the converse, if `(y, v) +
`(−y, v) = C then `(−y, v) = C− `(y, v). This means,

`σ(y, v) =
(1− σ)`(y, v)− σ`(−y, v)

1− 2σ

=
(1− σ)`(y, v)− σ(C− `(y, v))

1− 2σ

=
1

1− 2σ
`(y, v)− σC

1− 2σ
,

and thus by the above lemma, ` and `σ are order equivalent.
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4.15 Proof of Theorem 4.14

Proof. We begin with the forward implication. We have `(y, v) is convex in v, fur-
thermore `(y, v) + `(−y, v) = C. This means `(y, v) = C− `(−y, v), hence −`(−y, v)
is convex. Thus as `(y, v) and −`(y, v) are convex, `(y, v) = αyv + g(y). But,

`(y, v) + `(−y, v) = αyv + g(y) + α−yv + g(−y)

= (αy + α−y)v + g(y) + g(−y)

= C.

Therefore α−y = −αy = λ and `(y, v) = λyv + g(y). For the converse, if `(y, v) =

λyv + g(y), then,
`(y, v) + `(−y, v) = g(y) + g(−y) = C.

4.16 Proof of Theorem 4.15

Proof. If σ1`(−1, v) + σ−1`(1, v) = C, this means σ−y`(y, v) + σy`(−y, v) = C for all y.
This yields,

`σ−1,σ1(y, v) =
(1− σ−y)`(y, v)− σy`(−y, v)

1− σ−1 − σ1

=
(1− σ−y)`(y, v)− (C− σ−y`(y, v))

1− σ−1 − σ1

=
1

1− σ−1 − σ1
`(y, v)− C

1− σ−1 − σ1
,

where the first line is the definition of `σ−1,σ1(y, v) and the second is by assumption.
By lemma 4.23, `σ−1,σ1 and ` are order equivalent.

4.17 Proof of Theorem 4.16

Proof. Recall the balanced error,

BER`(P+, P−, f ) =
1
2

Ex∼P+`(1, f (x)) +
1
2

Ex∼P−`(−1, f (x)).

Remember that,

P̃+ = (1− α)P+ + αP− and P̃− = βP+ + (1− β)P−.
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This means for all classifiers f ,

Ex∼P̃+`(1, f (x)) = (1− α)Ex∼P+`(1, f (x)) + αEx∼P−`(1, f (x))

= (1− α)Ex∼P+`(1, f (x))− αEx∼P−`(−1, f (x)) + Cα,

where in the second line we have used the fact that `(1, v) = C− `(−1, v). Similarly,

Ex∼P̃−`(−1, f (x)) = −βEx∼P+`(1, f (x)) + (1− β)Ex∼P−`(−1, f (x)) + Cβ.

Taking the average of these two equations yields,

BER`(P̃+, P̃−, f ) = (1− α− β)BER`(P+, P−, f ) +
(α + β)

2
C.

4.18 Proof of Theorem 4.17

Proof. Firstly, for all classifiers f ,

`(Pσ, f ) = E(x,y)∼P(1− σ(x, y))`(y, f (x)) + σ(x, y)`(−y, f (x))

= E(x,y)∼P(1− σ(x, y))`(y, f (x)) + σ(x, y)(C− `(y, f (x)))

= E(x,y)∼P(1− 2σ(x, y))`(y, f (x)) + CE(x,y)∼Pσ(x, y),

where in the second line we have used the fact that `(1, v) + `(−1, v) = C. Now let,

f ∗σ = arg min
f∈F

L(Pσ, f ) and f ∗ = arg min
f∈F

L(P, f ),

respectively. By definition, `(Pσ, f ∗σ ) ≤ `(Pσ, f ∗). Combined with the above this
yields,

E(x,y)∼P(1− 2σ(x, y))`(y, f ∗σ (x)) ≤ E(x,y)∼P(1− 2σ(x, y))`(y, f ∗(x)).

From the assumption that σ(x, y) < 1
2 for all (x, y) ∈ X×Y,

min
(x,y)

1− 2σ(x, y) ≤ 1− 2σ(x, y) ≤ 1, ∀(x, y) ∈ X×Y.

This yields, (
min
(x,y)

1− 2σ(x, y)
)

E(x,y)∼P`(y, f ∗σ (x)) ≤ E(x,y)∼P`(y, f ∗(x)),

and the proof is complete.



5

Feature Learning via Transitions

Machine Learning methods are only as good as the features they learn from. This
simple observation has led to a plethora of feature learning methods. From methods
that aim to learn features and a linear classifier in one go such as neural networks and
predictive sparse coding [28; 74; 92], to methods based on conditional independence
tests [14; 61; 116; 127], to unsupervised feature learning methods [21; 69; 74; 102; 123]
and of course good old fashion hand engineered features. While there exist many
heuristic justifications for these methods, what is lacking is a general theory of feature
learning.

data // Feature Map // Classifier // prediction

We are all familiar with the above flow chart. Many methods exist to optimize each
of the above components. For a real application we are interested in measuring the
predictive performance of the combined system. For the sake of modularity we seek
means to measure the quality of each component separately. We seek a measure of
the quality of a feature map that is independent from the rest of the system, as well
as a means to combine this with the generalization performance of a classification
algorithm to provide bounds on the entire system.

To this end we review both supervised and unsupervised feature learning schemes,
presenting a novel supervised feature learning objective (section 5.2.1) as well as nov-
el means to measure the quality of features learnt independently from the supervised
task they are used in (theorem 5.4). We draw inspiration from both rate distortion
theory [46] as well as the comparison of statistical experiments [86; 117]. We provide
to our knowledge the first framework from which to understand feature learning as
well as a characterization (theorem 5.4) of when unsupervised feature learning is pos-
sible within our framework. We show that some existing feature learning schemes
can be realized as solving surrogates to the objective presented in theorem 5.4.



92 Feature Learning via Transitions

5.1 Notation and Preliminaries

Throughout the chapter, Y, X and Z will denote the label, instance and feature spaces
respectively. For simplicity, we work with proper losses ` : Y ×P(Y) → R, defined
in section 2.4. When working with a general loss, we can take ` to be its canonical
proper loss, as discussed in section 2.4. Recall the notion of entropy,

L(P) = inf
Q∈P(Y)

Ey∼P`(y, Q) = Ey∼P`(y, P).

We assume that the labels are distributed according to π ∈ P(Y) and that the rela-
tionship between labels Y and instances X is modelled by an experiment e ∈ T(Y, X).
For any algorithm AX ∈ T(X, P(Y)) recall the risk,

Rπ
` (e,A) := Ey∼πEx∼e(y)EQ∼AX(x)`(y, Q),

minimum Bayesian risks and Bayes optimal algorithm by,

Rπ
` (e) = min

AX
Rπ

` (e,AX) and A∗X = arg min
AX

Rπ
` (e,AX),

the minimum Bayesian risk and Bayes optimal algorithm respectively. Denote by πX,
the marginal distribution over X. Let ηX(x) be the conditional distribution of Y given
a particular x ∈ X. By standard manipulations,

Rπ
` (e) = Ex∼πX L(ηX(x)) = Ex∼πX Ey∼ηX(x)`(y, ηX(x))

and A∗X(x) = ηX(x), the true conditional distribution of Y given x ∈ X. Finally recall
that the regret for a proper loss has the following simple expression,

∆`(P, Q) = Ey∼P [`(y, Q)− `(y, P)] .

5.2 Supervised Feature Learning

For a multitude of reasons including but not limited to, computation, storage, the
curse of dimensionality, increased classification performance, knowledge discovery
and so on we may wish to process the instances through a (possibly randomized)
feature map T ∈ T(X, Z). For a given feature map, learning follows the protocol:
First, nature draws y∼π and x∼e(y). Second, the decision maker observes z∼T(x)
and chooses a distribution Q via an algorithm AZ. Finally, the decision maker incurs
loss `(y, Q). Diagrammatically,

y∼π // e x // T z // AZ
Q // `(y, Q).
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Ideally T should contain all the relevant information in x for predicting Y, The feature
gap,

∆Rπ
` (e, T) := Rπ

` (T ◦ e)−Rπ
` (e),

should be small. Denote by ηZ(z), the conditional distribution of Y given a particular
z ∈ Z.

Theorem 5.1. For all priors π, experiments e, feature maps T and loss functions `,

∆Rπ
` (e, T) = Ex∼πX Ez∼T(x)∆`(ηX(x), ηZ(z))

The feature gap is the expected regret suffered in predicting Y with the "cruder"
ηZ versus the clean ηX. Theorem 5.1 can be seen to underpin several algorithms for
supervised feature learning. One picks a proper loss ` and minimizes,

∆Rπ
` (e, T) = Ex∼πX Ez∼T(x)∆`(ηX(x), ηZ(z))).

If ` is strictly proper, i.e. ∆`(P, Q) = 0 if and only if P = Q, and the feature gap is
zero for this loss, it will be zero for all other losses. If,

∆Rπ
` (e, T) = 0, ∀`,

then by the Blackwell-Sherman Stein theorem 2.24, T ◦ e | e, i.e. there is a recon-
struction R ∈ T(Z, X) with e = R ◦ T ◦ e. In this case, the features are a sufficient
statistic for e. This means X and Y are conditionally independent given the features
Z. Methods that minimize the objective in theorem 5.1 can therefore be understood
as finding features that are approximately sufficient for the experiment e.

Using log loss gives ∆`(P, Q) = DKL(P, Q) which leads to the information bottle-
neck of Tishby et al [116]. More general Bregman divergences lead to clustering
with Bregman divergences [14]. Banerjee et al. in [14] present a meta algorithm for
minimizing the objective in theorem 5.1. This method is closely related to the Blahut-
Arimoto algorithm of rate distortion theory [46].

In practice, one might not know the exact loss function to use. Care must be tak-
en in choosing a suitable surrogate or set of surrogates. We show in section 5.4 that
the loss function can greatly influence the choice of feature map. This should be of
no surprise as the loss function defines the relevant information contained in X for
predicting Y [105].

5.2.1 Link to Deficiency

If the loss is not known one can perform a worst case analysis, and endeavour to
minimize over T,

sup
`,‖`‖∞≤1

∆Rπ
` (e, T).
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By theorem 2.32 of chapter 2,

sup
`,‖`‖∞≤1

∆Rπ
` (e, T) = Ξπ(e, T ◦ e).

Furthermore, as e | T ◦ e,

Ξπ(e, T ◦ e) = ξπ(T ◦ e, e) = min
R∈T(Z,X)

Ey∼πY V(R ◦ T ◦ e(y), e(y)).

In words, for T to provide good features no matter what the loss, we must be able to
reconstruct the experiment e from the experiment T ◦ e. Unlike in chapter 3, R is a
transition.

This suggests a means to construct features when the loss function is not known, by
minimizing the deficiency. While this may appear difficult, one can exploit properties
of the variational divergence that make calculating the deficiency a linear minimiza-
tion problem (see lemma 2.35). As long as the sets X, Y and Z are finite, fast methods
exist to solve this problem. One can obtain features by finding,

arg min
R∈T(Z,X),T∈T(X,Z)

Ey∼πY V(R ◦ T ◦ e(y), e(y)),

and then using T as the feature map. This can be solved approximately through an
alternating scheme of linear minimization problems (see section 5.11). Examples of
how this method behaves on some toy problems are given in section 5.4.

5.3 Unsupervised Feature Learning

One drawback of supervised feature learning methods is that they require knowledge
of the joint distribution of instances and labels, and possibly of the loss function of
interest. These methods consider a single supervised task in isolation. They extract
the information in X that is relevant to predicting Y. In many problems of interest
the decision maker has access to a large data set of unlabelled samples drawn from
πX, however they may have limited knowledge of the tasks that X will be used for.
They seek a feature map that loses little of the information contained in X, no matter
what task X is used in.

Here we make the assumption that we have enough data to form an accurate esti-
mate of πX, the marginal distribution over instances, and ask the following question.
Under what conditions can we guarantee that a feature map does not lose more than
ε information about Y no matter what the relation between X and Y or the loss func-
tion? The only restriction we place on the possible joint distributions on instance
label pairs is that the marginal distribution over instances is πX.

Theorem 5.2. For all feature maps T, ∆Rπ
` (e, T) ≤ ε‖`‖ for all label spaces Y, loss func-
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tions ` and label priors π and experiments e with e(π) = πX, if and only if there exists a
reconstruction R ∈ T(Z, X) such that,

Ex∼πX Ex′∼R◦T(x)[[x
′ 6= x]] ≤ ε.

In order to minimize the worst case information loss, one needs to be able to
reconstruct X from Z with high probability. We show in the next section that under
some of the heuristic justifications of deep learning techniques, like the autoencoder
[123], one is solving a surrogate to this problem.

Theorem 5.2 makes no use of any geometric structure on the instance space X. It
is required that the instance be reconstructed exactly. For a particular supervised
task, the conditional distribution ηX and the loss define a geometry on X. If we make
certain smoothness assumptions about this geometry, then we are no longer required
to reconstruct the features exactly.

Definition 5.3. For all conditional distributions ηX ∈ T(X, Y) and proper losses ` : Y ×
P(Y)→ R the reconstruction regret is,

D`,η(x′, x) = ∆`(ηX(x′), ηX(x)).

The reconstruction regret is the regret suffered in choosing actions based on a
nearby x′ when in fact one should have used x. Let d : X× X → R be a dissimilarity
function on X, i.e. a positive function with d(x′, x) = 0 if and only if x = x′. If we
assume that the supervised tasks that X is to be used in are "smooth" with respect
to d, then we no longer need to reconstruct the instances exactly. Rather, we only
require reconstructing well according to d.

Theorem 5.4. Let d : X × X → R be a dissimilarity function on X. For all feature maps T
the following are equivalent,

1. ∃R ∈ T(Z, X) such that Ex∼πX Ex′∼R◦T(x)d(x′, x) ≤ ε.

2. For all ηX and loss functions ` with D`,η(x′, x) ≤ λd(x′, x) ∀x, x′,
∆Rπ

` (e, T) ≤ ελ.

Theorem 5.2 follows by taking d to be the discrete metric on X, i.e. d(x′, x) = 0 if
x = x′ and 1 otherwise.

5.3.1 Surrogate Approaches Motivated by Theorem 5.2

Theorem 5.2 requires that the instances can be reconstructed from the features with
high probability. Many existing feature learning methods are motivated through an
appeal to the Infomax principle [88], which requires that features should be chosen to
maximize the mutual information between features and raw data, or equivalently to
minimize the conditional entropy. Here we show the Infomax principle is a surrogate
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to theorem 5.2. Let ν(z) be the conditional probability of X given z ∈ Z. Recall the
entropy and conditional entropy, see for example [46],

H(X) = Ex∼πX − log(πX(x)) and H(X|Z) = Ex∼πX Ez∼T(x) − log(ν(z)),

Theorem 5.5 (Hellman-Raviv [72]). Let X and Z be finite spaces. For all feature maps T
and marginals over instances πX,

inf
R

Ex∼πX Ex′∼R◦T(x)[[x
′ 6= x]] ≤ 1

2
H(X|Z).

The conditional entropy bounds the smallest probability of error possible when
one attempts to reconstruct X from the features. One can view the Infomax prin-
ciple as a surrogate to reconstruction error. By exploiting various representations
of H(X|Z), many other surrogates to reconstructing with high probability can be
obtained [20; 123]. By the properness of log loss,

H(X|Z) = inf
ν̃∈T(Z,X)

Ex∼πX Ez∼T(x) − log(ν̃(x)).

For example if X = Rn, and we restrict the possible ν̃ to distributions of the form
ν̃(z) = N ( f (z), σ2), i.e. normal distributions with mean f (z) and standard deviation
σ, we obtain,

H(X|Z) ≤ inf
f ,σ

Ex∼πX Ez∼T(x)
1

2σ2 (x− f (z))2 + log(
√

2πσ).

If we restrict the possible feature maps to deterministic functions g ∈ ZX, then the
autoencoder is obtained,

arg min
g

H(X|Z) = arg min
f ,g

Ex∼πX

1
2
(x− f ◦ g(x))2.

Hence the autoencoder can be seen as a surrogate approach motivated by theorem
5.2. Furthermore, the autoencoder can be motivated via theorem 5.4, with X = Rn

and d(x′, x) = ‖x′ − x‖2, the squared euclidean distance.

Many feature learning methods such as K-means and principle component analy-
sis can be seen as specific instances of the autoencoder. For example if f and g are
restricted to linear functions, PCA is recovered. If Z is finite set, then the autoencoder
becomes K-means. We summarize this in the table below.

The Autoencoder in its Different Forms, X = Rn

K-Means Z = [1; k], f and g arbitrary.

PCA Z = Rm, with m < n. f and g linear.

Deep Autoencoder Z = Rm, with m < n. f and g deep neural networks.
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5.3.2 Rate Distortion Theory

Theorems 5.2 and 5.4 provide upper bounds for the feature gap in terms of the re-
construction error. These upper bounds can be calculated without knowledge of the
particular task that the features are used in. Rate distortion theory provides lower
bounds.

Recall the mutual information I(X; Z) = H(X) − H(X|Z). Rate-distortion theory
[46], provides lower bounds on the distortion, or in our terminology Rπ

` (T ◦ e), in
terms of the rate, the mutual information between instances and features I(X; Z). Let
` : Y× A→ R be a general loss. The rate distortion function for ` is given by,

RD`(σ) = inf{I(Y; A) : Ey∼πEa∼A(y)`(x, a) ≤ σ}.

In words, the rate distortion function is the minimum mutual information required
between Y and the actions chosen by the algorithm to ensure expected loss less
than σ. It is a non-increasing function of σ. The Blahut-Arimoto algorithm is a fast
iterative scheme for calculating this function for an arbitrary loss, see for example
[46]. The decision maker is not allowed to use any transition from Y to A, rather they
are restricted to those of the form A = AZ ◦ T ◦ e as in the diagram below,

Y e // X T // Z
AZ // A.

By a form of the data processing theorem, presented in Cover and Thomas [46],
I(Y; A) ≤ I(X; Z). The distortion must satisfy σ ≥ RD−1

` (I(Y; A)). Combining these
two facts yields,

RD−1
` (I(X; Z)) ≤ Rπ

` (T ◦ e).

The end to end performance of the complete system is captured in the rate distortion
function, the quality of the feature map by I(X; Z). Combined with theorem 5.5, one
obtains bounds of the form,

RD−1
` (I(X; Z)) ≤ Rπ

` (T ◦ e) ≤ Rπ
` (e) +

1
2

H(X|Z)‖`‖∞, ∀`.

Figure 5.1 contains rate distortion curves for two loss functions ` : {−1, 1} × [0, 1]→
R. In blue is the curve for the Brier or quadratic loss, and in orange is the curve for a
tilted brier loss that is more biased to errors made on the first class. The curves show
that more mutual information is required for small expected tilted Brier loss than for
small expected Brier loss. The process of tilting a loss is explained in section 5.9.

The mutual information provides one surrogate means of measuring the informa-
tion lost by a feature map. Are there better surrogates? If we know the loss function
can we do better than mutual information for providing performance bounds? At
least in the case of the lower bound the answer is yes. In [132], Ziv and Zakai consid-
er a large class of generalized information measures. For each of these information
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measures a rate-distortion theorem is obtained, and in some cases using one of these
other measures produce tighter lower bounds than mutual information.

Definition 5.6. For convex f : R+ → R with f (1) = 0, the f -information of a joint
distribution PXY is given by,

I f (PXY) = EPXY f (
d(PX ⊗ PY)

dPXY
).

The f -information is the f -divergence between PXY and the product distributions
of its two marginals over X and Y. As an example of the different bounds one can
obtain using f -informations, we consider a simple example where Y = {−1, 1} and
the loss is a cost sensitive misclassification loss with `(−1, 1) = 1 and `(1,−1) = 4.
We consider the feature map,

T =

(
0.8 0.1 0.1

0.1 0.4 0.5

)

given as a row stochastic matrix with uniform prior πX. We consider f (x) = (
√

x−
1)2 resulting in Hellinger information, as well as the standard rate distortion curves
obtained from using mutual information. In figure 5.2, we plot the rate distortion
curves for both mutual information (red) and Hellinger information (blue) as well
as the two informations of the channel (the dashed horizontal lines). The black
vertical line represents the lower bound on the distortion. For this channel Hellinger
information gives a tighter (higher) lower bound.
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Fig. 5.1: Rate-Distortion plots using mutual information showing the performance of a chan-
nel for two different loss functions. The rate-distortion curve summarizes the trade off be-
tween rate (mutual information of the channel) and the distortion (expected loss sending

messages across the channel). See text.
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Hellinger Information ofT

Mutual Information ofT

Fig. 5.2: Generalized Rate-Distortion Plots providing lower bounds on the quality of features
via mutual and Hellinger information. In this example Hellinger information (blue) presents

a tighter lower bound than mutual information (red). See text.

5.3.3 Hierarchical Learning of Features

One of the main tenets of the deep learning paradigm is that features should be
learnt in a hierarchical fashion. Rather than learning a single feature map, one learns
a chain,

X = Z0

T1
++ Z1

R1

mm

T2
++ Z2

R2

kk
T3

++ . . .
R3

kk
Tn

++ Zn
Rn

kk

with final feature map T = Tn ◦ · · · ◦ T1 the composition of all the feature maps in
the chain, and final reconstruction given by T = R1 ◦ · · · ◦ Rn. The layers of such a
system can be learned in a greedy fashion. We can understand this procedure as a
surrogate approach motivated by theorem 5.2.

Theorem 5.7. For all chains of feature maps and reconstruction functions,

X = Z0

T1
++ Z1

R1

mm

T2
++ Z2

R2

kk
T3

++ . . .
R3

kk
Tn

++ Zn,
Rn

kk

the probability of reconstruction error for the entire chain is bounded by the the sum of the
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reconstruction errors for each layer,

P(x′ 6= x) ≤
n−1

∑
i=0

Ezi∼πZi
Ez′i∼Ri◦Ti

[[zi 6= z′i]].

5.4 Illustrations

In this section we present simple examples of how the different feature learning
schemes discussed operate in practice. We also give examples of when one can learn
sufficient features for a particular experiment as well as when it is possible to learn
generic features.

Experiment Specific Features. Let Y = R with X = Rn and e given by the prod-
uct of n normal distributions with mean y and variance 1. It is easy to verify that
the sample mean is a sufficient statistic meaning that at least for this experiment we
can greatly compress the information contained in X. However, if we take as a prior
for Y a normal distribution of mean 0 and variance 1, then the marginal distribution
πX will not be concentrated on a set of smaller dimension nor have any particularly
interesting structure (it will be concentrated on all of R). Hence we can not find
interesting generic features in this case.

Experiment and Loss Specific Features. Let Y = {−1, 1} with e = N (y, 1). For
this experiment, misclassification loss and π uniform on the two labels, the Bayes
optimal f is given by f (x) = 1 if x > 0 as P(−1|x) > 1

2 and f (x) = −1 otherwise
as P(−1|x) ≤ 1

2 . It is easy to show that ∆R`01
(e, f ) = 0, all we need is the output

of f . However if we change the loss to a cost sensitive loss `c where misclassify-
ing a positive example is more costly than a negative example, we no longer have
∆R`(e, f ) = 0. This is because the optimal f will no longer threshold at 0. However,
if there was a jump discontinuity in ηX, i.e. it jumped from say 0.4 to 0.6 as x crossed
over x = 0 then the feature gap would be zero for a broader range of cost sensitive
losses. Once again there are not generic features of interest.

Loss Sensitive versus Loss Insensitive Features. Let Y = {1, 2, 3} with π unifor-
m and e given by the normal distributions in the figure below. Consider the feature
space Z = {1, 2}. Figure 5.3 shows a plot of the features learnt by two different
feature learning schemes.

The first feature map does not use knowledge of the loss, and is learnt by mini-
mizing deficiency (see section 5.2.1). The second features make use of a particular
loss function, where misclassifying a 2 is more costly than misclassifying one of the
other classes. This feature map is learnt via clustering with Bregman divergences. A
proper loss of this form is achieved by tilting the standard Brier loss [32] toward class
2. Tilting is explained in section 5.9. The green regions are those x that are mapped
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to the feature 1, the blue are those mapped to 2.

We can see even in this simple example that the loss function matters when deter-
mining features. While the first feature map divides X into regions that allow good
reconstruction of all the class conditionals, the second focuses on separating the con-
ditional for 2 as dictated by the loss function. The deficiency of each of these feature
maps is similar. ξπ(T ◦ e, e) = 0.629 for the first feature map and ξπ(T ◦ e, e) = 0.698
for the second. Thus from a worst case perspective the two feature maps are very
similar. However, for the particular loss we have used to construct the second feature
map, difference of the two feature maps is more pronounced. ∆Rπ

` (e, T) = 1.075 for
the first feature map versus ∆Rπ

` (e, T) = 0.325 for the second.

Fig. 5.3: Loss Sensitive versus Loss Insensitive Features. The curves denote the probability
distribution of instances given labels, the squares denote regions with the same feature map.

The plot shows that the loss really matters for choosing features. See text.

Learning Generic Features. All previous examples have considered a fixed exper-
iment. When learning features in an unsupervised fashion, one wishes to find fea-
tures that work for all experiments that use X. There are many examples of when
this is possible, and they all boil down to some sort of manifold assumption. If πX

is concentrated on some lower dimensional subset of X, then one can find generic
features. The challenges here are primarily computational, rather than information
theoretic.

5.5 Conclusion

Automated feature learning methods have produced remarkable empirical results,
however little theory exists explaining their performance. This chapter provides some
direction. To this end, we have placed several supervised feature learning methods in
a general framework, provided a novel loss insensitive objective for learning features
as well as providing novel means quantifying the quality of features learnt by unsu-
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pervised methods. Finally, we have shown the usefulness of rate-distortion theory
and its under utilized generalizations in ascertaining the quality of learnt features.



Appendix to Chapter 5

5.6 Proof of Theorem 5.1

Proof.

Rπ
` (T ◦ e)−Rπ

` (e) = Ey∼πEx∼e(y)Ez∼T(x)`(y, ηZ(z))−Ey∼πEx∼e(y)`(y, ηX(x))

= Ex∼πX Ey∼ηX(x)Ez∼T(x)`(y, ηZ(z))−Ex∼πX Ey∼ηX(x)`(y, ηX(x))

= Ex∼πX Ez∼T(x)

[
Ey∼ηX(x)`(y, ηZ(z))− `(y, ηX(x))

]
= Ex∼πX Ez∼T(x)∆`(ηZ(z), ηX(x)),

where the first line is by definition, the second is by rewriting Ey∼πEx∼e(y) as an
expectation Ex∼πX Ey∼ηX(x), the third uses Fubini’s theorem to change the order of
Ey∼ηX(x)Ez∼T(x) to Ez∼T(x)Ey∼ηX(x), and finally we have used the definition of regret.

5.7 Proof of Theorem 5.4

Proof. We first prove the forward implication. By assumption, there exits a recon-
struction R with,

Ex∼πX Ex′∼R◦T(x)d(x′ 6= x) ≤ ε.

Now consider the algorithm ηX ◦ R, that first reconstructs the instance and then uses
the optimal learning algorithm for the instances, ηX. We have,

Rπ
` (T ◦ e)−Rπ

` (e) ≤ Rπ
` (T ◦ e, ηX ◦ R)−Rπ

` (e)

= Ey∼πEx∼e(y)Ex′∼R◦T(x)`(y, ηX(x′))−Ey∼πEx∼e(y)`(y, ηX(x)).

Rearranging the expectations using Bayes rule and Fubini’s theorem yields,

Rπ
` (T ◦ e)−Rπ

` (e) ≤ Ex∼πX Ex′∼R◦T(x)
[
Ey∼ηX`(y, ηX(x′))− `(y, ηX(x))

]
= Ex∼πX Ex′∼R◦T(x)∆`(ηX(x′), ηX(x))

= Ex∼πX Ex′∼R◦T(x)D`,η(x′, x)

≤ Ex∼πX Ex′∼R◦T(x)λd(x′, x)

≤ λε,
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where the second and third line follows by definition, the forth follows by the s-
moothness assumption on the reconstruction regret, and finally the last line follows
from our assumptions on R.

For the converse, take Y = X with e = idX, the most informative experiment on
X and loss function given by the metric itself. In this case ηX(x) is a point mass on x
and the reconstruction regret is d,

∆d(ηX(x′), ηX(x)) = d(x′, x).

We have Rπ
d (idX) = 0, which means by assumption there exists an algorithm R with,

Rπ
d (T) = Ex∼πX Ex′∼R◦T(x)d(x′, x) ≤ ε.

5.8 Proof of Theorem 5.7

Proof. Let (z0, . . . , zn) be the "true" elements at each level of the chain and (z′0, . . . , z′n−1)

their reconstructions. Consider the joint distribution P with,

P(z0, z1, . . . , zn, z′0, z′1, . . . , z′n−1) = P(z0)P(z1|z0) . . . P(zn|zn − 1)P(z′n−1|zn) . . . P(z′0|z′1),

where the conditional distributions are specified by the feature maps Ti and the
reconstructions Ri. Under this joint distribution,

P(z0 6= z′0) = P(z0 6= z′0 ∩ z1 = z′1) + P(z0 6= z′0 ∩ z1 6= z′1)

≤ P(z0 6= z′0 ∩ z1 = z′1) + P(z1 6= z′1).

To complete the proof, note that P(z0 6= z′0 ∩ z1 = z′1) = Ez0∼πZ0
Ez′0∼R1◦T1(z0)[[z0 6= z′0]]

and proceed inductively.

5.9 Tilted Loss Functions

In producing figures 5.1 and 5.3, we made use of the "tilted" Breir loss. Here we ex-
plain how to "tilt" any loss function, producing an asymmetric loss from a symmetric
loss.

Recall from section 2.4, that a canonical loss can be represented by its entropy,
L : P(Y)+ → R, that assigns an uncertainty to each weight µ. For two weights
µ1, µ2 ∈ P+(Y), denote by µ1 � µ2 the weight,

µ1 � µ2(y) = µ1(y)µ2(y),
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the element wise product of the two weights. Intuitively, this can be thought of as
altering the weights of µ2 with the "importances" µ1. For a "tilting" weight ω, define
the tilted entropy,

Lω(µ) = L(ω� µ).

Intuitively, this entropy is L tilted toward the y ∈ Y that are riskier. This tilted entropy
can be used to produce a skewed loss function. We show this through an example.

Let Y = {−1, 1} and let L be the Brier (or quadratic) entropy,

L(µ) =
2µ1µ−1

µ−1 + µ1
,

where µ±1 is the weight assigned to the positive and negative labels respectively. Let
ω = (1 + α, 1− α), i.e. ω increases the weight on the negative labels and decreases
the weight on positive labels.

Lω(µ) =
2(1− α)(α + 1)µ1µ−1
(1 + α)µ−1 + (1− α)µ1

.

We plot Breir and tilted Breir entropies (for α = 1
2 ) as a function of the probability of

negative labels in figure 5.4.
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Fig. 5.4: Breir and Tilted Breir entropies. Tilting provides means to skew an entropy toward
a particular class. See text.

We can see that tilting has made predicting the positive class riskier. Recall from
section 2.4, that taking super gradients of an entropy produces a canonical loss. In
figure 5.5, we plot the partial loss functions for Breir and tilted Breir entropies (for
α = 1

2 ). As can be seen, the tilting process has made classifying negatives correctly
more important.
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5.10 The Information Bottleneck/ Clustering with Bregman
Divergences

For a given experiment e and loss function `, the information bottleneck/ clustering
with Bregman divergences attempt to find a feature map by solving,

inf
T

β∆Rπ
` (e, T) + I(X; Z),

i.e. a regularized feature gap, with the mutual information I(X; Z) serving as the reg-
ularizer. Intuitively, the features should maintain information relevant for predicting
Y, while throwing away as much information from X as possible. This problem can
be solved by an alternating algorithm presented in both Tishby et al [116] (the o-
riginal bottleneck for log loss) and Banerjee et al [14] (a generalization to Bregman
divergences). Here we review the derivation of this algorithm.

Theorem 5.8 (Clustering with Bregman Divergences). For all experiments e and proper
losses `,

min
T

β∆Rπ
` (e, T) + I(X; Z)

=min
T

min
η̃Z

min
π̃Z

βEx∼πX Ez∼T(x)∆`(ηX(x), η̃Z(z)) + Ex∼πX DKL(T(x), π̃Z).

This theorem replaces a single minimization over T, that is difficult to calculate
directly, by three separate minimizations. The difficulty stems from the fact that
ηZ(x) and πZ, the conditional distribution of labels given features and the marginal
distribution over features, both depend on T. The above theorem provides means to
circumvent this.
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To proceed, one fixes two of the quantities and performs a minimization of the third.
Each of these separate problems is easy to solve, and is the driving force behind the
information bottleneck and clustering with Bregman divergences.

For the proof we require the following lemma from Banerjee et al [14] on the minimiz-
ers of Bregman divergences. Bregman divergences [29] are a large class of distance
like quantities, that include the KL divergence and the regret (see [105] and section
2.4.2).

Recall for a concave function Φ : C → R, with C a convex set, the Bregman diver-
gence is given by,

DΦ(x, y) = Φ(x) + 〈y− x,∇L(x)〉 −Φ(y),

where ∇L(x) is a super-gradient of Φ at the point x.

Lemma 5.9. For all concave φ : C → R and distributions P ∈ P(C),

Ex∼Px ∈ arg min
x∈C

Ey∼PDφ(y, x).

The mean is the expected Bregman divergence minimizer.

This is proposition 1 of [14]. We can now prove the theorem.

Proof. Firstly,

I(X; Y) = Ex∼πX DKL(T(x), πZ) = min
π̃Z

Ex∼πX DKL(T(x), π̃Z),

as Ex∼πX T(x) = πZ. Secondly, let ν(z) be the conditional distribution of X given a
particular z ∈ Z. Then,

Ex∼πX Ez∼T(x)∆`(ηX(x), ηZ(z)) = Ez∼πZ Ex∼ν(z)∆`(ηX(x), ηZ(z))

= Ez∼πZ min
η̃Z(z)

Ex∼ν(z)∆`(ηX(x), η̃Z(z))

= Ez∼πZ min
η̃Z(z)

Ex∼ν(z)∆`(ηX(x), η̃Z(z)),

as Ex∼ν(z)ηX(x) = ηZ(z), as this is just marginalizing over X in the Markov chain

Z ν // X
ηX // Y.

Combing these two results yields the theorem.

Theorem 5.8 allows one to (at least approximately) find loss specific features.
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5.11 Loss Insensitive Feature Learning

Recall that loss insensitive feature learning seeks to find a feature map T and recon-
struction R that minimize,

min
R∈T(Z,X),T∈T(X,Z)

Ey∼πY V(R ◦ T ◦ e(y), e(y)).

In lemma 2.35, we showed how deficiency can be calculated via linear programming.
Here we show how the above objective can be minimized via an alternating pair of
linear programs. Assuming that X, Y, Z are all finite sets, e, T and R can be represent-
ed by column stochastic matrices E, T, R respectively, with composition represented
as matrix multiplication. Furthermore the marginal over labels π can be represented
by a probability vector. Fixing T and minimizing over R means solving the following
linear program,

inf
Mij,Rij

|X|

∑
i=1

|Y|

∑
j=1

Mij

subject to Mi,j, Ri,j ≥ 0 ∀i, j
|X|

∑
i=1

Ri,j = 1 ∀j

|πiEij − πi [RTE]ij| ≤ Mij ∀i, j.

The final constraint can be written as a pair of linear constraints. Fixing R and
minimizing over T means solving the following linear program,

inf
Mij,Tij

|X|

∑
i=1

|Y|

∑
j=1

Mij

subject to Mi,j, Ti,j ≥ 0 ∀i, j
|Z|

∑
i=1

Ti,j = 1 ∀j

|πiTij − πi [RTE]ij| ≤ Mij ∀i, j.

Alternating these two minimizations provides means to find loss insensitive features.
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Conclusion

Beginning with the notion of a transition, this thesis has sought to provide a foun-
dational language for machine learning as a whole. The presentation is abstract. We
argue that this abstraction allows greater connections to be seen. An example of this
is theorem 3.19 of chapter 3. To prove this theorem, and more importantly to under-
stand why it should be proved, many results concerning corruption corrected losses
and representation of losses need to be in place. Without the abstract development
and presentation of these results, it would be hard to understand why theorem 3.19
is important, or why you should look for it in the first place.

The major contributions of this thesis are:

• An increased understanding of corrupted learning problems, including new
methods to learn from corrupted data as well as means to measure the relative
difficulty of these problems (theorems 3.2, 3.4 and 3.15). Furthermore, theorem
3.19 shows that we need not abandon the framework of convex risk minimiza-
tion to attack corrupted learning problems.

• A conceptually simple, easily parallelized and robust classification algorithm
(chapter 4).

• An increased understanding of when it is possible to learn generically good
features from data together with justification of various techniques used in
practice as surrogate approaches to this problem (theorems 5.2, 5.4 and 5.5).

The contributions of this thesis would not have been possible without taking a suf-
ficiently abstract approach. While there is never going to be one single language for
all of machine learning, seeking unification is something we should all take more
seriously. Often in machine learning research, the focus is on "solving problems" by
producing fancy new algorithms. Theorems are replaced by tables of experimental
results.

A great example of this is the field of learning with noisy labels. Experimentation
reveals that the standard methods, such as the support vector machine, are not ro-
bust in this setting. Rather than clearly formulating the problem and attacking it via
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theorems, many have tried to use intuition and tables of results. Methods of excep-
tional computational complexity (surveyed in section 4.4.4) have been suggested for
solving this problem, methods that in fact are not robust to label noise. As we have
seen in chapter 4, by firmly grounding the problem of learning with noisy labels in
clear definitions, and seeking theorems, we have discovered a classification algorithm
that is simpler than the standard methods.

There are many directions open to explore. In order of increasing difficulty:

1. Explore the algorithmic consequences of the mean classification algorithm. There
are many techniques for reducing more complicated problems to those of bi-
nary classification. For example, the problem of multi-class classification can
be reduced to a collection of binary classification problems, via one versus all
and one versus rest approaches. It will be worthwhile understanding how the
mean classifier fits in with all of this.

2. Explore methods to learn when the corruption process is not known (see sec-
tion 3.7). This could proceed in two directions; firstly one could identify more
corruption invariant losses akin to the loss explored in chapter 4. Alternately,
one could develop methods for estimating the corruption process like those p-
resented in [100]. Generalized forms of these estimators do not exist, nor does
any theory explaining why those that do exist work.

3. Develop a better understanding of how to design unsupervised feature learning
schemes for use in a particular supervised learning algorithm. In chapter 5,
we assumed the decision maker would would use the best algorithm for the
features. Perhaps the insights gleaned in chapter 4 could prove useful.

4. Develop theory for a "restricted deficiency", when one considers a subset of
possible losses. By theorem 2.32, the deficiency distance is a supremum of the
difference in risk for all losses. The risk uses a single loss. It would be useful
to use subsets of possible losses. In chapter 5, feature learning algorithms were
motivated via the risk and the deficiency, i.e. we either work with one loss or
all of them. A "restricted deficiency" would fill in this gap. Little work exists in
this direction beyond a few comments in section 10.2 of Torgersen [117].

Transitions will serve as a guiding light in this future work.
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A

PAC-Bayesian Generalization
Bounds

Here we present the PAC-Bayesian generalization and risk bounds used in proofs in
chapters 3 and 4.

Machine Learning can be understood as the study of prediction. A decision maker is
required to predict observations of nature. We assume the decision maker’s obser-
vations lie in a set Z , their available predictions/actions in a set A and the quality
of their actions is assessed by a loss function ` : Z × A → R. The decision maker
summarizes their uncertainty in their observations through a probability distribution
P ∈ P(Z). Ultimately they aim to minimize their expected loss, Ez∼P`(z, a). In order
to make the correct decision, the decision maker must infer the correct P. They do
this by observing the phenomena in question. Define the expected loss,

`(P, Q) = Ez∼PEa∼Q`(z, a).

In a Bayesian analysis the decision maker restricts themselves to a subset Θ ⊆ P(Z),
together with a prior π ∈ P(Θ). They seek an algorithm A : Z → P(A) that
minimizes the expected risk under the prior distribution,

Eθ∼πEz∼Pθ
`(Pθ ,A(z)).

It is easy to show [67] that the algorithm that minimizes the above risk, first calcu-
lates the Bayesian predictive distribution, and then calculates the best action to play
against this distribution. This approach is overly reliant on the restriction, or "mod-
el", Θ. If the decision maker faces a P outside of this model, the Bayesian approach
may result in a substantially suboptimal algorithm. The focus here is on algorithms
with good worst case performance. To do this, one controls the risk with bounds of
the form,

Ez∼P`(P,A(z)) ≤ Ez∼P`(z,A(z)) + ψ(A),

that link the risk of an algorithm via its ability to predict the observation. Such
bounds allow the design of generic learning algorithms. Also of use are generalization



114 PAC-Bayesian Generalization Bounds

bounds of the form,
`(P,A(z)) ≤ `(z,A(z)) + ψ(A),

with high probability on a draw z∼P. Such bounds allow the assessment of the
performance of the output of algorithms via its predictive accuracy on the observa-
tion. The term ψ(A) punishes complicated algorithms that over fit the observation.
One particular technique for producing these bounds provides methods that are very
similar to the Bayesian approach, with a key difference. Rather than priors and pos-
teriors on Θ, the focus is priors and posteriors on A. Rather than guessing which
P they are likely to face via a model, the decision maker guesses which actions are
more likely to be appropriate apriori. PAC-Bayesian bounds [6; 34; 65; 98; 110; 134]
provide means to assess the generalization performance of learning algorithms. Here
we present the version of the bounds presented in [134].

A.1 Information Exponential Inequality and Annealed Loss

All of the following bounds can be derived from the following simple lemmas.

Lemma A.1 (The Information Exponential Inequality). For all sample spaces Ω, func-
tions f ∈ RΩ and distributions P, Q ∈ P(Ω),

EP f ≤ log EQe f + DKL(P, Q).

Proof. Consider the distribution Q′ ∝ e f dQ. Then,

DKL(P, Q′) ≥ 0

EP log(
EQe f

e f
dP
dQ

) ≥ 0

log(EQe f ) + EP log(
dP
dQ

)−EP f ≥ 0,

which upon rearranging gives the desired result.

One can understand the information exponential inequality as an application of
Fenchel duality [13]. To gain high probability guarantees on the output of our algo-
rithms, we utilize the Chernoff bound.

Lemma A.2 (Chernoff Bound). Let f ∈ RΩ. Then for all α ∈ R and for all P ∈ P(Ω),

Px∼P( f (x) ≤ α) ≥ 1− e−αEPe f .

The proof of this lemma is a simple application of Markov’s inequality and can
be found in any standard text on probability theory.
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Annealed Losses

To construct generalization bounds from the previous lemmas, one needs to choose
the right f in the information exponential inequality. Naively one would think to use
the generalization gap,

f (z, a) = `(P, a)− `(z, a).

Tighter bounds can be obtained with a different choice of f . To this end, we consider
annealed loss functions. For any loss function ` and β > 0, define the annealed and
doubly annealed loss,

`β(P, Q) = − 1
β

Ea∼Q log(Ez∼Pe−β`(z,a)), `ββ(P, Q) = − 1
β

log(Ez∼PEa∼Qe−β`(z,a)).

The larger β, the more large losses are suppressed. By the convexity of − log,

`ββ(P, Q) ≤ `β(P, Q) ≤ `(P, Q).

Furthermore, as β→ 0+, `ββ(P, Q), `β(P, Q)→ `(P, Q). The annealed loss can also be
understood as the expected cummulant generating function of the random variable
`(−, a), and the doubly annealed loss the cumulant generating function of `. Finally
the annealed generalisation gap,

β
(
`β(P, a)− `(z, a)

)
,

can be understood as the log probability of observing z under the probability distri-
bution P(Z = z) ∝ e−β`(z,a). The bounds that follow link `β(P,A(z)) to `(z,A(z)) for
z∼P.

A.2 The Main Theorems

For a fixed prior π ∈ P(A) and algorithm A : Z → P(A), consider the two joint
distributions P ⊗ A, P ⊗ π ∈ P(Z × A). The distribution P ⊗ A adapts to the ob-
servation z. To sample from P ⊗ A, first sample z∼P and then a∼A(z). The other
samples actions from a fixed "prior" distribution π irrespective of the observed z.

Theorem A.3 (PAC-Bayes Expectation). For all distributions P, priors π, algorithms A,
loss functions ` and β > 0,

Ez∼P`β(P,A(z)) ≤ Ez∼P

[
`(z,A(z)) + DKL(A(z), π)

β

]
.

Proof. Let,

f (z, a) = β
(
`β(P, a)− `(z, a)

)
= − log(Ez′∼Pe−β(`(z′,a)−`(z,a))),
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the annealed generalization gap. The proof is a simple application of lemma 1 using
the f and distributions defined previously. We have by the lemma,

EP⊗A f ≤ log EP⊗πe f + DKL(P⊗A, P⊗ π).

Firstly,

EP⊗πe f = EP⊗π
e−β`(z,a)

Ez′∼Pe−β`(z′,a)

= Ea∼πEz∼P
e−β`(z,a)

Ez′∼Pe−β`(z′,a)

= 1.

Furthermore,

EP⊗A f = Ez∼PEa∼A(z)

[
− log(Ez′∼Pe−β`(z′,a))− β`(z, a)

]
DKL(P⊗A, P⊗ π) = Ez∼PDKL(A(z), π),

yielding,

Ez∼PEa∼A(z) − log(Ez′∼Pe−β`(z′,a)) ≤ Ez∼P [β`(z,A(z)) + DKL(A(z), π)] .

Finally, divide both sides by β.

Theorem A.4 (PAC-Bayes High Probability). With probability at least 1− δ on a draw
z∼P with A, π and β fixed before the draw,

`β(P,A(z)) ≤ `(z,A(z)) +
DKL(A(z), π) + log

( 1
δ

)
β

.

Proof. Once again we invoke lemma 1 with f as in the previous theorem, yielding for
all z,

Ea∼A(z) f (z, a)− DKL(A(z), π) ≤ log Ea∼πe f (z,a)

exp(Ea∼A(z) f (z, a)− DKL(A(z), π)) ≤ Ea∼πe f (z,a)

Ez∼P exp(Ea∼A(z) f (z, a)− DKL(A(z), π)) ≤ Ez∼PEa∼πe f (z,a)

= 1,

where the last line was shown in the previous theorem. We obtain the required result
from Chernoff’s bound.

The great utility of these theorems is their remarkable generality. They apply to
all negatively bounded loss functions.
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A.3 Replication and Rates

Rather than one realization of Z , it is usual to repeat an experiment several times,
obtaining a sample S of n independent observations. For a sample S ∈ Zn define,

`(S, a) =
1
|S| ∑z∈S

`(z, a),

the average loss of a on the sample and `(Pn, a) = `(P, a) the expected loss on
the sample. `(S, a) can also be understood as the expectation of the loss under the
uniform distribution over the sample.

Lemma A.5. For all distributions P, loss functions `, β > 0 and sample sizes n,

`βn(Pn, Q) = `β(P, Q).

Proof.

`βn(Pn, Q) = − 1
βn

Ea∼Q log(ES∼Pn e−βn`(S,a))

= − 1
βn

Ea∼Q log(Ezn∼Pn e−β ∑n
i=1 `(zi ,a))

= − 1
βn

Ea∼Q log(
n

∏
i=1

Ezi∼Pe−β`(zi ,a))

= − 1
β

Ea∼Q log(Ez∼Pe−β`(z,a)),

where the third and fourth line follows as the zi are iid random variables with distri-
bution P.

Theorem A.6 (Replicated PAC-Bayes Theorem). For all distributions P, priors π, algo-
rithms A, loss functions ` and β > 0,

ES∼Pn`β(P,A(S)) ≤ ES∼Pn

[
`(S,A(S)) + DKL(A(S), π)

βn

]
.

Furthermore, with probability at least 1− δ on a draw S∼Pn with A, π and β fixed before
the draw,

`β(P,A(S)) ≤ `(S,A(S)) +
DKL(A(S), π) + log

( 1
δ

)
βn

.

Proof. Use theorems A.3 and A.4 with the above lemma.
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A.4 Relationship to Union Bounds

Let A be finite with π uniform on A. We assume further that all algorithms are
deterministic. By standard results in information theory (see Cover and Thomas
[46]), we have DKL(A(S), π) = log(|A|), and theorem A.6 yields,

`β(P,A(S)) ≤ `(S,A(S)) +
log(|A|) + log

( 1
δ

)
βn

,

with probability at least 1− δ. We show how this can be realized as Chernoff’s bound
with a union bound. Fix an action a and let,

fa(S) = log(
e−nβ`(S,a)

ES∼Pn e−nβ`(S,a)
),

which can be interpreted as the log probability of a distribution over samples, where
samples with low loss `(S, a), are more likely. Chernoff’s bound yields,

PS∼Pn( fa(S) > α) ≤ e−α.

This bound applies for one action. To obtain a bound that applies for all actions
simultaneously, we invoke a union bound yielding,

PS∼Pn( fa(S) > α, ∀a ∈ A) ≤ |A|e−α.

Setting δ = |A|e−α, and rearranging yields,

`β(P, a) ≤ `(S, a) +
log(|A|) + log

( 1
δ

)
βn

, ∀a ∈ A,

with probability at least 1− δ. PAC-Bayesian bounds can therefore be understood
as continuous union bounds, as pointed out by Tim van Erwen in [119]. The Cher-
noff bound is a vital ingredient in the proof of many concentration results, such as
Hoefding’s and Bernstein’s inequalities. We show in the following section how these
techniques can be used with PAC-Bayesian bounds.

A.5 Bounds for Bounded Losses

Here we assume the losses are positive and bounded,

‖`‖∞ = max
z,a
|`(z, a)| ≤ 1.

The previous theorems bound `β(P,A(S)) in terms of `(S,A(S)). Ideally, we wish to
bound `(P,A(S)). The following lemmas allow this. Their proofs appear in appendix
A.1 of [35]. They are used in the proofs of the standard Hoeffding and Bernstein
Inequalities.
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Lemma A.7. Let f : Ω→ [0, 1]. For all β ∈ R and all P ∈ P(Ω),

(1− e−β)EP f ≤ − log(EPe−β f ).

Lemma A.8. Let f : Ω→ [0, 1]. For all β ∈ R and all P ∈ P(Ω),

βEP f − β2

8
≤ − log(EPe−β f ).

Lemma A.9. Let f : Ω→ [−1, ∞), then for all β > 0 and all P ∈ P(Ω),

βEP f − (eβ − 1− β)EP f 2 ≤ − log(EPe−β f ).

Combined with the PAC-Bayes theorem these inequalities yield the follow theo-
rems for bounded losses. For brevity we only state the high probability result.

Theorem A.10 (PAC-Bayes Multiplicative Hoeffding). For all distributions P, with prob-
ability at least 1− δ on a draw S∼Pn with A, π and β fixed before the draw,

`(P,A(S)) ≤ β

1− e−β
`(S,A(S)) + 1

1− e−β

DKL(A(S), π) + log
( 1

δ

)
n

.

Theorem A.11 (PAC-Bayes Additive Hoeffding). For all distributions P, with probability
at least 1− δ on a draw S∼Pn with A, π and β fixed before the draw,

`(P,A(S)) ≤ `(S,A(S)) +
DKL(A(S), π) + log

( 1
δ

)
βn

+
β

8
.

Theorem A.12 (PAC-Bayes Bernstein). Let γ = (eβ−1−β)
β . For all P, with probability at

least 1− δ on a draw S∼Pn with A, π and β fixed before the draw,

`(P,A(S)) ≤ `(S,A(S)) +
DKL(A(S), π) + log

( 1
δ

)
βn

+ γ`2(P,A(S)).

For a fixed learning algorithm and β, these three bounds all hold simultaneously.
The multiplicative Hoeffding bound is appropriate for low loss settings where the
lack of tightness is no issue. The additive Hoeffding bound is tight however we pay
with extra additive slack. Finally, the Bernstein bound is useful when we can control
the variance term,

`2(P,A(S)) ≤ κ`(P,A(S)), ∀S.

This condition can hold in more general scenarios than the low noise or "realizable"
condition needed for fast rates in the multiplicative Hoeffding bound.
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A.6 The ERM Principle

The generalization bounds presented in the previous section show that to produce
algorithms with low risk, one can use the following procedure. First pick a prior π,
regularization parameter β and class of possible posterior distributions Q ⊆ P(A)

and take,

A(S) = arg min
Q∈Q

`(S, Q) +
DKL(Q, π)

βn
.

If A is finite and π is uniform, this "generalized" ERM principle reduces to the more
standard ERM principle [122],

AERM(S) = arg min
a∈A

`(S, a).

If ` is bounded then with probability at least 1− δ,

`(P,AERM(S)) ≤ `(S,AERM(S)) +
log(|A|) + log

( 1
δ

)
βn

+
β

8
.

Optimizing over β yields a rate of convergence to the optimal at rate 1√
n . More

generally, the best randomized algorithm is given by,

A(S) ∝ e−βn`(S,−)dπ.

Actions with low loss on the sample are up-weighted accordingly (as one would ex-
pect). If ` is log loss, then the above distribution is the standard Bayesian posterior
distribution.

It is advantageous to work with deterministic algorithms. On means of "de-randomizing"
an algorithm is by taking the expected action. Suppose A is convex, ` is convex in a
and let Q̄ = Ea∼Qa. Then,

`(P, Q̄) ≤ `(P, Q).

Therefore averaging over the posterior distribution provides a deterministic algorith-
m with lower loss than randomizing. If ` is log loss, Q̄ is the standard Bayesian
predictive distribution.

A.7 Bias Variance Trade Off

To motivate algorithms, we fixed β and π and minimized the bound. Alternately, we
can fix A and β and find the prior that minimizes the upper bound

Theorem A.13 ([99]). For any algorithm A and a distribution P, let πA be the marginal
distribution over actions. Then,

πA = arg min
π

ES∼Pn DKL(A(S), π).
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Furthermore, ES∼Pn DKL(A(S), πA) is the mutual information [46] between the sample and
the action chosen by the algorithm.

Algorithms with low risk are precisely those that predict the training sample
well (have high bias) while using as little information from the sample as possible
(low variance). One means to produce algorithms with lower variance is to treat the
sample S as if it was P, sample from S with replacement generating a "bootstrapped"
sample S′ [30]. One repeats this procedure k times yielding k actions ai = A(S′i).
Finally one aggregates these functions, perhaps by averaging, by randomizing or in
the case of classification by taking a majority vote. Such ensemble methods have had
large practical success.
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